Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom.
J Chem Theory Comput. 2021 Feb 9;17(2):1250-1265. doi: 10.1021/acs.jctc.0c01179. Epub 2021 Jan 25.
The TIES (Thermodynamic Integration with Enhanced Sampling) protocol is a formally exact alchemical approach in computational chemistry to the calculation of relative binding free energies. The validity of TIES relies on the correctness of matching atoms across compared pairs of ligands, laying the foundation for the transformation along an alchemical pathway. We implement a flexible topology superimposition algorithm which uses an exhaustive joint-traversal for computing the largest common component(s). The algorithm is employed to enable matching and morphing of partial rings in the TIES protocol along with a validation study using 55 transformations and five different proteins from our previous work. We find that TIES 20 with the RESP charge system, using the new superimposition algorithm, reproduces the previous results with mean unsigned error of 0.75 kcal/mol with respect to the experimental data. Enabling the morphing of partial rings decreases the size of the alchemical region in the dual-topology transformations resulting in a significant improvement in the prediction precision. We find that increasing the ensemble size from 5 to 20 replicas per λ window only has a minimal impact on the accuracy. However, the non-normal nature of the relative free energy distributions underscores the importance of ensemble simulation. We further compare the results with the AM1-BCC charge system and show that it improves agreement with the experimental data by slightly over 10%. This improvement is partly due to AM1-BCC affecting only the charges of the atoms local to the mutation, which translates to even fewer morphed atoms, consequently reducing issues with sampling and therefore ensemble averaging. TIES 20, in conjunction with the enablement of ring morphing, reduces the size of the alchemical region and significantly improves the precision of the predicted free energies.
TIES(热力学积分与增强采样)协议是计算相对结合自由能的计算化学中正式精确的化学计量学方法。TIES 的有效性依赖于比较配体对之间原子的匹配正确性,为沿着化学计量学途径的转变奠定了基础。我们实现了一种灵活的拓扑叠加算法,该算法使用穷举联合遍历来计算最大公共组件。该算法用于在 TIES 协议中对部分环进行匹配和变形,并使用我们之前工作中的 55 个变换和 5 种不同蛋白质进行验证研究。我们发现,带有 RESP 电荷系统的 TIES 20,使用新的叠加算法,相对于实验数据,以 0.75 kcal/mol 的平均无符号误差重现了先前的结果。使部分环变形能够在双拓扑变换中减小化学计量区域的大小,从而显著提高预测精度。我们发现,将集合大小从每个 λ 窗口的 5 个副本增加到 20 个副本仅对准确性有最小的影响。然而,相对自由能分布的非正态性质强调了集合模拟的重要性。我们进一步将结果与 AM1-BCC 电荷系统进行比较,并表明它通过略微超过 10%提高了与实验数据的一致性。这种改进部分归因于 AM1-BCC 仅影响突变附近原子的电荷,这转化为更少的变形原子,从而减少了采样问题,因此也减少了集合平均问题。TIES 20 与环变形的启用相结合,减小了化学计量区域的大小,并显著提高了预测自由能的精度。