Suppr超能文献

揭示听觉皮层处理的原理:我们能从视觉系统中学到什么?

Unraveling the principles of auditory cortical processing: can we learn from the visual system?

作者信息

King Andrew J, Nelken Israel

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

出版信息

Nat Neurosci. 2009 Jun;12(6):698-701. doi: 10.1038/nn.2308. Epub 2009 May 26.

Abstract

Studies of auditory cortex are often driven by the assumption, derived from our better understanding of visual cortex, that basic physical properties of sounds are represented there before being used by higher-level areas for determining sound-source identity and location. However, we only have a limited appreciation of what the cortex adds to the extensive subcortical processing of auditory information, which can account for many perceptual abilities. This is partly because of the approaches that have dominated the study of auditory cortical processing to date, and future progress will unquestionably profit from the adoption of methods that have provided valuable insights into the neural basis of visual perception. At the same time, we propose that there are unique operating principles employed by the auditory cortex that relate largely to the simultaneous and sequential processing of previously derived features and that therefore need to be studied and understood in their own right.

摘要

对听觉皮层的研究往往受一种假设驱动,该假设源于我们对视觉皮层的更深入理解,即声音的基本物理属性在被高级区域用于确定声源身份和位置之前,就在听觉皮层中得到表征。然而,我们对皮层在听觉信息广泛的皮层下处理过程中所起的作用了解有限,而皮层下处理过程可以解释许多感知能力。部分原因在于迄今为止主导听觉皮层处理研究的方法,未来的进展无疑将受益于采用那些为视觉感知的神经基础提供了宝贵见解的方法。同时,我们提出听觉皮层采用了独特的运作原则,这些原则很大程度上与对先前提取特征的同时性和顺序性处理相关,因此需要对其自身进行研究和理解。

相似文献

1
Unraveling the principles of auditory cortical processing: can we learn from the visual system?
Nat Neurosci. 2009 Jun;12(6):698-701. doi: 10.1038/nn.2308. Epub 2009 May 26.
2
Sensitivity and selectivity of neurons in auditory cortex to the pitch, timbre, and location of sounds.
Neuroscientist. 2010 Aug;16(4):453-69. doi: 10.1177/1073858410371009. Epub 2010 Jun 7.
3
Interdependent encoding of pitch, timbre, and spatial location in auditory cortex.
J Neurosci. 2009 Feb 18;29(7):2064-75. doi: 10.1523/JNEUROSCI.4755-08.2009.
4
Double dissociation of 'what' and 'where' processing in auditory cortex.
Nat Neurosci. 2008 May;11(5):609-16. doi: 10.1038/nn.2108. Epub 2008 Apr 13.
6
Sparse codes of harmonic natural sounds and their modulatory interactions.
Network. 2009;20(4):253-67. doi: 10.3109/09548980903447751.
7
Interacting parallel pathways associate sounds with visual identity in auditory cortices.
Neuroimage. 2016 Jan 1;124(Pt A):858-868. doi: 10.1016/j.neuroimage.2015.09.044. Epub 2015 Sep 28.
8
Seeing sounds: visual and auditory interactions in the brain.
Curr Opin Neurobiol. 2006 Aug;16(4):415-9. doi: 10.1016/j.conb.2006.06.008. Epub 2006 Jul 11.
9
Mechanisms of Sound Localization in Two Functionally Distinct Regions of the Auditory Cortex.
J Neurosci. 2015 Dec 9;35(49):16105-15. doi: 10.1523/JNEUROSCI.2563-15.2015.
10
The dual-pathway model of auditory signal processing.
Neurosci Bull. 2008 Jun;24(3):173-82. doi: 10.1007/s12264-008-1226-8.

引用本文的文献

1
Spatially clustered neurons in the bat midbrain encode vocalization categories.
Nat Neurosci. 2025 May;28(5):1038-1047. doi: 10.1038/s41593-025-01932-3. Epub 2025 Apr 14.
2
Subcortical origin of nonlinear sound encoding in auditory cortex.
Curr Biol. 2024 Aug 5;34(15):3405-3415.e5. doi: 10.1016/j.cub.2024.06.057. Epub 2024 Jul 19.
3
Two Prediction Error Systems in the Nonlemniscal Inferior Colliculus: "Spectral" and "Nonspectral".
J Neurosci. 2024 Jun 5;44(23):e1420232024. doi: 10.1523/JNEUROSCI.1420-23.2024.
5
Adaptation in auditory processing.
Physiol Rev. 2023 Apr 1;103(2):1025-1058. doi: 10.1152/physrev.00011.2022. Epub 2022 Sep 1.
6
Cochlea to categories: The spatiotemporal dynamics of semantic auditory representations.
Cogn Neuropsychol. 2021 Oct-Dec;38(7-8):468-489. doi: 10.1080/02643294.2022.2085085. Epub 2022 Jun 21.
7
Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation.
Biol Cybern. 2022 Aug;116(4):475-499. doi: 10.1007/s00422-022-00936-7. Epub 2022 Jun 20.
8
Exploring Hierarchical Auditory Representation a Neural Encoding Model.
Front Neurosci. 2022 Mar 24;16:843988. doi: 10.3389/fnins.2022.843988. eCollection 2022.
9
Structural Connectivity of Human Inferior Colliculus Subdivisions Using and Diffusion MRI Tractography.
Front Neurosci. 2022 Mar 22;16:751595. doi: 10.3389/fnins.2022.751595. eCollection 2022.
10
Functional characterization of human Heschl's gyrus in response to natural speech.
Neuroimage. 2021 Jul 15;235:118003. doi: 10.1016/j.neuroimage.2021.118003. Epub 2021 Mar 28.

本文引用的文献

1
Interdependent encoding of pitch, timbre, and spatial location in auditory cortex.
J Neurosci. 2009 Feb 18;29(7):2064-75. doi: 10.1523/JNEUROSCI.4755-08.2009.
3
The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex.
Front Comput Neurosci. 2007 Nov 2;1:3. doi: 10.3389/neuro.10.003.2007. eCollection 2007.
4
Millisecond-scale differences in neural activity in auditory cortex can drive decisions.
Nat Neurosci. 2008 Nov;11(11):1262-3. doi: 10.1038/nn.2211. Epub 2008 Oct 12.
5
Double dissociation of 'what' and 'where' processing in auditory cortex.
Nat Neurosci. 2008 May;11(5):609-16. doi: 10.1038/nn.2108. Epub 2008 Apr 13.
6
Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex.
Hear Res. 2008 Jun;240(1-2):22-41. doi: 10.1016/j.heares.2008.02.004. Epub 2008 Feb 19.
7
Sparse representation of sounds in the unanesthetized auditory cortex.
PLoS Biol. 2008 Jan;6(1):e16. doi: 10.1371/journal.pbio.0060016.
8
Role of corticofugal feedback in hearing.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Feb;194(2):169-83. doi: 10.1007/s00359-007-0274-2. Epub 2008 Jan 29.
10
Auditory cortex mapmaking: principles, projections, and plasticity.
Neuron. 2007 Oct 25;56(2):356-65. doi: 10.1016/j.neuron.2007.10.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验