Suppr超能文献

听觉皮层被模拟为振荡器的动态网络:理解事件相关的场及其适应。

Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation.

机构信息

Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany.

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117, Berlin, Germany.

出版信息

Biol Cybern. 2022 Aug;116(4):475-499. doi: 10.1007/s00422-022-00936-7. Epub 2022 Jun 20.

Abstract

Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.

摘要

适应是指神经元在重复刺激下反应的减弱,它是听觉皮层(AC)的一个普遍特征。目前尚不清楚适应的原因是什么,但短期突触抑制(STSD)是潜在的机制候选者。在这种情况下,适应可以直接与 AC 产生上下文敏感反应的方式相关联,例如在单细胞水平上观察到的失匹配负波和刺激特异性适应。我们通过基于 AC 解剖结构的计算模型来检验这一假设,该模型包括串联的核心、带和副带区域。该模型复制了脑磁图的事件相关场(ERF)以及 ERF 适应。模型动力学由细胞群体的兴奋性和抑制性状态变量描述,兴奋性连接受 STSD 调节。我们通过线性化放电率并使用时间尺度分离来求解 STSD 方程来分析系统动力学。这允许将 AC 动力学描述为阻尼谐波振荡器的叠加,即所谓的正常模式。我们表明,N1m 的重复抑制是由多种原因造成的,刺激重复改变了正常模式的幅度和频率。在这种观点下,适应是由于 AC 动力学的完全重新组织而不是离散源活动的减少而产生的。此外,网络结构和兴奋与抑制之间的平衡对 AC 从适应中恢复的速度有很大贡献。尽管 STSD 的时间常数在空间上是均匀的,但适应的寿命在带和副带中比在核心区域长。最后,我们批判性地评估了使用单个指数函数来描述适应的恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/9287241/299a2b673487/422_2022_936_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验