Suppr超能文献

纵向二元数据广义估计方程分析中几种工作相关结构选择方法的比较。

A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data.

作者信息

Shults Justine, Sun Wenguang, Tu Xin, Kim Hanjoo, Amsterdam Jay, Hilbe Joseph M, Ten-Have Thomas

机构信息

Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, USA.

出版信息

Stat Med. 2009 Aug 15;28(18):2338-55. doi: 10.1002/sim.3622.

Abstract

The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data.

摘要

广义估计方程(GEE)方法通过一个有模式的相关矩阵对个体上重复观测之间的关联进行建模。就提高效率和增进科学理解而言,正确设定潜在结构是一个可能有益的目标。在对具有二元结局的纵向研究进行GEE分析时,我们考虑了先前分别提出的两组标准,一组用于选择合适的工作相关结构,另一组用于排除特定的结构。第一个选择标准选择使得回归参数估计量协方差矩阵的基于模型的估计量和基于三明治的估计量最接近的结构,而第二个选择标准选择使加权误差平方和最小的结构。排除标准不选择那些估计的相关参数违反依赖边际均值的二元数据标准约束的结构。此外,如果估计的参数值产生的估计相关结构不是正定的,我们就将这些结构排除在考虑之外。在一项比较两种治疗重度抑郁发作方法的纵向试验背景下,我们使用模拟数据和真实数据研究了这两组标准的性能。还给出了关于在纵向二元数据的GEE分析中使用这些标准来帮助有效选择工作相关结构的实用建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验