Miller M E, Davis C S, Landis J R
Section on Biostatistics, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27157-1063.
Biometrics. 1993 Dec;49(4):1033-44.
In recent years, methods have been developed for modelling repeated observations of a categorical response obtained over time on the same individual. Although situations in which the repeated response is binary or Poisson have been studied extensively, relatively little attention has been given to polytomous categorical response variable. In this paper, we extend the estimating equations initially developed for clustered discrete data by Liang and Zeger (1986, Biometrika 73, 13-22), and subsequently extended by Prentice (1988, Biometrics 44, 1033-1048), to polytomous response variables. Under certain assumptions, we illustrate that these estimating equations simplify to the weighted least squares (WLS) equations formalized by Koch et al. (1977, Biometrics 33, 133-158). This connection provides a formal framework for obtaining iterated weighted least squares model parameter estimates. Cumulative logit models are developed and applied to a representative longitudinal data set. Simulation results comparing WLS, an iterative form of WLS, and independence estimating equations using a robust estimate of the variance are presented.
近年来,已开发出一些方法来对同一受试者随时间获得的分类反应的重复观测值进行建模。尽管对重复反应为二元或泊松分布的情况已进行了广泛研究,但对多分类反应变量的关注相对较少。在本文中,我们将最初由Liang和Zeger(1986年,《生物统计学》73卷,第13 - 22页)为聚类离散数据开发、随后由Prentice(1988年,《生物统计学》44卷,第1033 - 1048页)扩展的估计方程扩展到多分类反应变量。在某些假设下,我们说明这些估计方程简化为Koch等人(1977年,《生物统计学》33卷,第133 - 158页)形式化的加权最小二乘(WLS)方程。这种联系为获得迭代加权最小二乘模型参数估计提供了一个正式框架。开发了累积对数模型并将其应用于一个具有代表性的纵向数据集。给出了比较WLS、WLS的一种迭代形式以及使用稳健方差估计的独立性估计方程的模拟结果。