Suppr超能文献

利用声辐射力弹性成像技术进行下肢血管成像:体内可行性的验证

Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility.

作者信息

Dumont Douglas, Dahl Jeremy, Miller Elizabeth, Allen Jason, Fahey Brian, Trahey Gregg

机构信息

Duke University, Biomedical Engineering, Durham, NC, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):931-44. doi: 10.1109/TUFFC.2009.1126.

Abstract

Acoustic radiation force impulse (ARFI) imaging characterizes the mechanical properties of tissue by measuring displacement resulting from applied ultrasonic radiation force. In this paper, we describe the current status of ARFI imaging for lower-limb vascular applications and present results from both tissue-mimicking phantoms and in vivo experiments. Initial experiments were performed on vascular phantoms constructed with polyvinyl alcohol for basic evaluation of the modality. Multilayer vessels and vessels with compliant occlusions of varying plaque load were evaluated with ARFI imaging techniques. Phantom layers and plaque are well resolved in the ARFI images, with higher contrast than B-mode, demonstrating the ability of ARFI imaging to identify regions of different mechanical properties. Healthy human subjects and those with diagnosed lower-limb peripheral arterial disease were imaged. Proximal and distal vascular walls are well visualized in ARFI images, with higher mean contrast than corresponding B-mode images. ARFI images reveal information not observed by conventional ultrasound and lend confidence to the feasibility of using ARFI imaging during lower-limb vascular workup.

摘要

声辐射力脉冲(ARFI)成像通过测量外加超声辐射力产生的位移来表征组织的力学特性。在本文中,我们描述了ARFI成像在下肢血管应用中的现状,并展示了仿组织体模和体内实验的结果。最初的实验是在由聚乙烯醇构建的血管体模上进行的,用于该模态的基本评估。采用ARFI成像技术对多层血管以及具有不同斑块负荷的顺应性闭塞血管进行了评估。在ARFI图像中,体模层和斑块得到了很好的分辨,对比度高于B模式,这表明ARFI成像能够识别不同力学特性的区域。对健康人体受试者以及被诊断为下肢外周动脉疾病的患者进行了成像。在ARFI图像中,近端和远端血管壁清晰可见,平均对比度高于相应的B模式图像。ARFI图像揭示了传统超声无法观察到的信息,并为在下肢血管检查中使用ARFI成像的可行性提供了信心。

相似文献

1
Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):931-44. doi: 10.1109/TUFFC.2009.1126.
3
Harmonic tracking of acoustic radiation force-induced displacements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2347-58. doi: 10.1109/TUFFC.2013.6644738.
4
Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract.
Ultrason Imaging. 2005 Apr;27(2):75-88. doi: 10.1177/016173460502700202.
6
Characterizing stiffness of human prostates using acoustic radiation force.
Ultrason Imaging. 2010 Oct;32(4):201-13. doi: 10.1177/016173461003200401.
7
The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
Ultrasound Med Biol. 2015 Feb;41(2):601-9. doi: 10.1016/j.ultrasmedbio.2014.09.028. Epub 2014 Dec 23.
8
Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
Ultrasonics. 2014 Feb;54(2):621-31. doi: 10.1016/j.ultras.2013.08.018. Epub 2013 Sep 12.
10
Comparison of Acoustic Radiation Force Impulse Imaging Derived Carotid Plaque Stiffness With Spatially Registered MRI Determined Composition.
IEEE Trans Med Imaging. 2015 Nov;34(11):2354-65. doi: 10.1109/TMI.2015.2432797. Epub 2015 May 13.

引用本文的文献

1
A Spatial Coherence Beamformer Design for Power Doppler Imaging.
IEEE Trans Med Imaging. 2020 May;39(5):1558-1570. doi: 10.1109/TMI.2019.2953657. Epub 2019 Nov 14.
2
Combining Slow Flow Techniques With Adaptive Demodulation for Improved Perfusion Ultrasound Imaging Without Contrast.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):834-848. doi: 10.1109/TUFFC.2019.2898127. Epub 2019 Feb 7.
3
Development of an intravascular ultrasound elastography based on a dual-element transducer.
R Soc Open Sci. 2018 Apr 25;5(4):180138. doi: 10.1098/rsos.180138. eCollection 2018 Apr.
5
Ultrasound Vascular Elastography as a Tool for Assessing Atherosclerotic Plaques - A Systematic Literature Review.
Ultrasound Int Open. 2016 Nov;2(4):E106-E112. doi: 10.1055/s-0042-115564. Epub 2016 Oct 13.
6
Preclinical evaluation of acoustic radiation force impulse measurements in regions of heterogeneous elasticity.
Ultrasonography. 2016 Oct;35(4):345-52. doi: 10.14366/usg.16024. Epub 2016 Jul 25.
7
On the Feasibility of Quantifying Fibrous Cap Thickness With Acoustic Radiation Force Impulse (ARFI) Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1262-75. doi: 10.1109/TUFFC.2016.2535440. Epub 2016 Mar 2.
8
Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics.
Biomed Opt Express. 2014 Dec 3;6(1):11-22. doi: 10.1364/BOE.6.000011. eCollection 2015 Jan 1.
10
B-mode and acoustic radiation force impulse (ARFI) imaging of prostate zonal anatomy: comparison with 3T T2-weighted MR imaging.
Ultrason Imaging. 2015 Jan;37(1):22-41. doi: 10.1177/0161734614542177. Epub 2014 Jul 23.

本文引用的文献

1
Quantifying hepatic shear modulus in vivo using acoustic radiation force.
Ultrasound Med Biol. 2008 Apr;34(4):546-58. doi: 10.1016/j.ultrasmedbio.2007.10.009. Epub 2008 Jan 25.
2
Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries.
Ultrasound Med Biol. 2007 Dec;33(12):1841-58. doi: 10.1016/j.ultrasmedbio.2007.05.020. Epub 2007 Aug 15.
3
In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging.
Ultrasound Med Biol. 2007 Nov;33(11):1706-19. doi: 10.1016/j.ultrasmedbio.2007.05.009. Epub 2007 Aug 15.
4
Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):498-509. doi: 10.1109/tuffc.2007.273.
5
A parallel tracking method for acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):301-12. doi: 10.1109/tuffc.2007.244.
8
ARFI imaging for noninvasive material characterization of atherosclerosis.
Ultrasound Med Biol. 2006 Nov;32(11):1703-11. doi: 10.1016/j.ultrasmedbio.2006.07.014.
9
The static elastic properties of the arterial wall.
J Physiol. 1961 May;156(3):445-57. doi: 10.1113/jphysiol.1961.sp006686.
10
Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jul;53(7):1300-13. doi: 10.1109/tuffc.2006.1665078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验