Basarab Adrian, Gueth Pierre, Liebgott Hervé, Delachartre Philippe
University of Lyon, CREATIS-lRMN, CNRS UMR 5220, 69621 Villeurbanne Cedex, France.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):945-57. doi: 10.1109/TUFFC.2009.1127.
A phase-based block matching method adapted to motion estimation with unconventional beamforming strategies is presented. The unconventional beamforming technique used allows us to obtain 2-D RF images with axial and lateral modulations. Based on these images, we propose a method that uses phase images instead of amplitude images. This way of proceeding allows us to provide an analytical solution to the local displacement estimation so that no minimization of a classical cost function is used for the local estimation. For this reason, the local estimator is directly applied to signals, without the need to process a complex cross-correlation function, as is done with most of the phase shift estimators. In this paper, the method is applied to elastography. Results with simulated data show that a downsampling of axial and lateral modulated signals leads to very little change in the accuracy and in the spatial resolution of the proposed method. For example, for decimation factors of 2 in the axial direction and of 4 in the lateral direction, the mean axial absolute error is 3 mum. The same estimation with original images provides a mean axial error of 0.7 microm. The accuracy of the lateral motion is unchanged in this case. The accuracy of our method with downsampled signals is an important issue in the purpose of a real-time implementation. With experimental data, for the same level of estimation error, classical block matching using the maximum of cross correlation as a local estimator requires images that are 36 times larger (in number of pixels) and consequently a computational time roughly 10 times longer. Our phase block matching is also shown to provide 10 percent less error than a motion estimation method based on seeking the zero of the complex correlation function phase. Finally, it is shown that given the separability of the local estimator that we propose, our method can be applied on both n-D signals and classical RF ultrasound images. The phase block matching method presented was implemented in real time on an ultrasound research scanner.
提出了一种基于相位的块匹配方法,该方法适用于采用非常规波束形成策略的运动估计。所采用的非常规波束形成技术使我们能够获得具有轴向和横向调制的二维射频(RF)图像。基于这些图像,我们提出了一种使用相位图像而非幅度图像的方法。这种方法使我们能够为局部位移估计提供一种解析解,从而在局部位估计中无需最小化经典代价函数。因此,局估计器可直接应用于信号,无需像大多数相移估计器那样处理复杂的互相关函数。在本文中,该方法应用于弹性成像。模拟数据结果表明,轴向和横向调制信号的下采样对所提方法的精度和空间分辨率影响很小。例如,在轴向的抽取因子为2且在横向的抽取因子为4时,平均轴向绝对误差为3μm。使用原始图像进行相同估计时,平均轴向误差为0.7μm。在这种情况下,横向运动的精度不变。对于实时实现而言,我们采用下采样信号的方法的精度是一个重要问题。对于实验数据,在相同的估计误差水平下,使用互相关最大值作为局估计器的经典块匹配需要大36倍(像素数量)的图像,因此计算时间大约长10倍。我们的相位块匹配还显示出比基于寻找复相关函数相位零点的运动估计方法的误差小10%。最后表明,鉴于我们提出的局估计器的可分离性,我们的方法可应用于n维信号和经典的射频超声图像。所提出的相位块匹配方法在超声研究扫描仪上实现了实时处理。