Suppr超能文献

通过考虑局部图像失真来改进运动估计。

Improving motion estimation by accounting for local image distortion.

作者信息

Behar Vera, Adam Dan, Lysyansky Peter, Friedman Zvi

机构信息

Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.

出版信息

Ultrasonics. 2004 Oct;43(1):57-65. doi: 10.1016/j.ultras.2004.02.022.

Abstract

Cardiac elastography is a useful diagnostic technique for detection of heart function abnormalities, based on analysis of echocardiograms. The analysis of the regional heart motion allows assessing the extent of myocardial ischemia and infarction. In this paper, a new two-stage algorithm for cardiac motion estimation is proposed, where the data is taken from a sequence of 2D echocardiograms. The method combines the advantages of block-matching and optical flow techniques. The first stage employs a standard block-matching algorithm (sum of absolute differences) to provide a displacement estimate with accuracy of up to one pixel. At the second stage, this estimate is corrected by estimating the parameters of a local image transform within a test window. The parameters of the image transform are estimated in the least-square sense. In order to account for typical heart motions, like contraction/expansion, translation and rotation, a local affine model is assumed within the test window. The accuracy of the new algorithm is evaluated using a sequence of 500 grayscale B-mode images, which are generated as distorted, but known copies of an original ROI, taken from a real echocardiogram. The accuracy of the motion estimation is expressed in terms of errors: maximum absolute error, root-mean-square error, average error and standard deviation. The errors of the proposed algorithm are compared with these of the known block-matching technique with cross-correlation and interpolation in the sub-pixel space. Statistical analysis of the errors shows that the proposed algorithm provides more accurate estimates of the heart motion than the cross-correlation technique with interpolation in the sub-pixel space.

摘要

心脏弹性成像技术是一种基于超声心动图分析来检测心脏功能异常的有用诊断技术。通过分析局部心脏运动,可以评估心肌缺血和梗死的程度。本文提出了一种用于心脏运动估计的两阶段新算法,该算法的数据来自二维超声心动图序列。该方法结合了块匹配和光流技术的优点。第一阶段采用标准块匹配算法(绝对差之和)来提供精度高达一个像素的位移估计。在第二阶段,通过估计测试窗口内局部图像变换的参数来校正该估计。图像变换的参数采用最小二乘法进行估计。为了考虑诸如收缩/扩张、平移和旋转等典型心脏运动,在测试窗口内假设采用局部仿射模型。使用500幅灰度B模式图像序列对新算法的精度进行评估,这些图像是从真实超声心动图中获取的原始感兴趣区域(ROI)的失真但已知的副本。运动估计的精度用误差来表示:最大绝对误差、均方根误差、平均误差和标准差。将所提算法的误差与已知的在亚像素空间中采用互相关和插值的块匹配技术的误差进行比较。误差的统计分析表明,所提算法比在亚像素空间中采用插值的互相关技术能提供更准确的心脏运动估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验