Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2403-20. doi: 10.1109/TUFFC.2010.1708.
A widely used time-domain technique for motion or delay estimation between digitized ultrasound RF signals involves the maximization of a discrete pattern-matching function, usually the cross-correlation. To achieve sub-sample accuracy, the discrete pattern-matching function is interpolated using the values at the discrete maximizer and adjacent samples. In prior work, only 1-D fit, applied separately along the axial, lateral, and elevational axes, has been used to estimate the sub-sample motion in 1-D, 2-D, and 3-D. In this paper, we explore the use of 2-D and 3-D polynomial fitting for this purpose. We quantify the estimation error in noise-free simulations using Field II and experiments with a commercial ultrasound machine. In simulated 2-D translational motions, function fitting with quartic spline polynomials leads to maximum bias of 0.2% of the sample spacing in the axial direction and 0.4% of the sample spacing in the lateral direction, corresponding to 38 nm and 1.31 μm, respectively. The maximum standard deviations were approximately 1% of the sample spacing in both the axial and the lateral directions, corresponding to 193 nm axially and 4.43 μm laterally. In simulated 1% axial strain, the same function fitting leads to mean absolute displacement estimation errors of 255 nm in the axial direction and 4.77 μm in the lateral direction. In experiments with a linear array transducer, 2-D quartic spline fitting leads to maximum bias of 458 nm and 6.27 μm in the axial and the lateral directions, respectively. These results are more than one order of magnitude smaller than those obtained with separate 1-D fit when applied to the same data set. Simulations and experiments in 3-D yield similar results when comparing 3-D polynomial fitting with 1-D fitting along the axial, lateral, and elevational directions.
一种广泛应用于数字化超声射频信号之间运动或延迟估计的时域技术涉及到离散模式匹配函数(通常是互相关)的最大化。为了实现亚采样精度,使用离散最大值及其相邻样本的值对离散模式匹配函数进行插值。在先前的工作中,仅使用 1-D 拟合(分别沿轴向、横向和高程轴应用)来估计 1-D、2-D 和 3-D 中的亚采样运动。在本文中,我们探索了为此目的使用 2-D 和 3-D 多项式拟合的方法。我们使用 Field II 进行无噪声模拟和使用商业超声机进行实验来量化噪声模拟中的估计误差。在模拟的 2-D 平移运动中,使用四次样条多项式进行函数拟合会导致在轴向方向上的样本间距的最大偏差为 0.2%,在横向方向上的样本间距的最大偏差为 0.4%,分别对应于 38nm 和 1.31μm。轴向和横向方向上的最大标准偏差分别约为样本间距的 1%,对应于轴向的 193nm 和横向的 4.43μm。在模拟的 1%轴向应变中,相同的函数拟合会导致轴向方向上的平均绝对位移估计误差为 255nm,横向方向上的平均绝对位移估计误差为 4.77μm。在使用线性阵列换能器的实验中,2-D 四次样条拟合会导致轴向和横向方向上的最大偏差分别为 458nm 和 6.27μm。当将其应用于相同的数据集时,这些结果比使用相同数据集中的单独 1-D 拟合获得的结果小一个数量级以上。当将 3-D 多项式拟合与沿轴向、横向和高程方向的 1-D 拟合进行比较时,3-D 模拟和实验会产生类似的结果。