Tharp Anthony C, Laha Malabika, Panizzi Peter, Thompson Michael W, Fuentes-Prior Pablo, Bock Paul E
Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
J Biol Chem. 2009 Jul 17;284(29):19511-21. doi: 10.1074/jbc.M109.005512. Epub 2009 May 27.
Streptokinase (SK) conformationally activates the central zymogen of the fibrinolytic system, plasminogen (Pg). The SK.Pg* catalytic complex binds Pg as a specific substrate and cleaves it into plasmin (Pm), which binds SK to form the SK.Pm complex that propagates Pm generation. Catalytic complex formation is dependent on lysine-binding site (LBS) interactions between a Pg/Pm kringle and the SK COOH-terminal Lys(414). Pg substrate recognition is also LBS-dependent, but the kringle and SK structural element(s) responsible have not been identified. SK mutants lacking Lys(414) with Ala substitutions of charged residues in the SK beta-domain 250-loop were evaluated in kinetic studies that resolved conformational and proteolytic Pg activation. Activation of [Lys]Pg and mini-Pg (containing only kringle 5 of Pg) by SK with Ala substitutions of Arg(253), Lys(256), and Lys(257) showed decreases in the bimolecular rate constant for Pm generation, with nearly total inhibition for the SK Lys(256)/Lys(257) double mutant. Binding of bovine Pg (BPg) to the SK.Pm complex containing fluorescently labeled Pm demonstrated LBS-dependent assembly of a SK.labeled Pm.BPg ternary complex, whereas BPg did not bind to the complex containing the SK Lys(256)/Lys(257) mutant. BPg was activated by SK.Pm with a K(m) indistinguishable from the K(D) for BPg binding to form the ternary complex, whereas the SK Lys(256)/Lys(257) mutant did not support BPg activation. We conclude that SK residues Arg(253), Lys(256), and Lys(257) mediate Pg substrate recognition through kringle 5 of the [Lys]Pg and mini-Pg substrates. A molecular model of the SK.kringle 5 complex identifies the putative interactions involved in LBS-dependent Pg substrate recognition.
链激酶(SK)通过构象变化激活纤维蛋白溶解系统的中心酶原——纤溶酶原(Pg)。SK.Pg*催化复合物将Pg作为特异性底物结合,并将其裂解为纤溶酶(Pm),Pm与SK结合形成SK.Pm复合物,从而促进Pm的生成。催化复合物的形成依赖于Pg/Pm kringle与SK羧基末端Lys(414)之间的赖氨酸结合位点(LBS)相互作用。Pg底物识别也依赖于LBS,但尚未确定负责的kringle和SK结构元件。在解决构象和蛋白水解性Pg激活的动力学研究中,对SK中Lys(414)缺失且β结构域250环中带电荷残基被丙氨酸取代的突变体进行了评估。用Arg(253)、Lys(256)和Lys(257)被丙氨酸取代的SK激活[Lys]Pg和微型Pg(仅包含Pg的kringle 5),结果显示Pm生成的双分子速率常数降低,对于SK Lys(256)/Lys(257)双突变体几乎完全抑制。牛Pg(BPg)与含有荧光标记Pm的SK.Pm复合物的结合证明了LBS依赖性的SK.标记Pm.BPg三元复合物的组装,而BPg不与含有SK Lys(256)/Lys(257)突变体的复合物结合。BPg被SK.Pm激活,其米氏常数(K(m))与BPg结合形成三元复合物的解离常数(K(D))无法区分,而SK Lys(256)/Lys(257)突变体不支持BPg的激活。我们得出结论,SK残基Arg(253)、Lys(256)和Lys(257)通过[Lys]Pg和微型Pg底物的kringle 5介导Pg底物识别。SK.kringle 5复合物的分子模型确定了参与LBS依赖性Pg底物识别的假定相互作用。