Suppr超能文献

链激酶β结构域中的精氨酸253、赖氨酸256和赖氨酸257以及底物的kringle 5促进了链激酶-纤溶酶原催化复合物对纤溶酶原底物的识别。

Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate.

作者信息

Tharp Anthony C, Laha Malabika, Panizzi Peter, Thompson Michael W, Fuentes-Prior Pablo, Bock Paul E

机构信息

Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

出版信息

J Biol Chem. 2009 Jul 17;284(29):19511-21. doi: 10.1074/jbc.M109.005512. Epub 2009 May 27.

Abstract

Streptokinase (SK) conformationally activates the central zymogen of the fibrinolytic system, plasminogen (Pg). The SK.Pg* catalytic complex binds Pg as a specific substrate and cleaves it into plasmin (Pm), which binds SK to form the SK.Pm complex that propagates Pm generation. Catalytic complex formation is dependent on lysine-binding site (LBS) interactions between a Pg/Pm kringle and the SK COOH-terminal Lys(414). Pg substrate recognition is also LBS-dependent, but the kringle and SK structural element(s) responsible have not been identified. SK mutants lacking Lys(414) with Ala substitutions of charged residues in the SK beta-domain 250-loop were evaluated in kinetic studies that resolved conformational and proteolytic Pg activation. Activation of [Lys]Pg and mini-Pg (containing only kringle 5 of Pg) by SK with Ala substitutions of Arg(253), Lys(256), and Lys(257) showed decreases in the bimolecular rate constant for Pm generation, with nearly total inhibition for the SK Lys(256)/Lys(257) double mutant. Binding of bovine Pg (BPg) to the SK.Pm complex containing fluorescently labeled Pm demonstrated LBS-dependent assembly of a SK.labeled Pm.BPg ternary complex, whereas BPg did not bind to the complex containing the SK Lys(256)/Lys(257) mutant. BPg was activated by SK.Pm with a K(m) indistinguishable from the K(D) for BPg binding to form the ternary complex, whereas the SK Lys(256)/Lys(257) mutant did not support BPg activation. We conclude that SK residues Arg(253), Lys(256), and Lys(257) mediate Pg substrate recognition through kringle 5 of the [Lys]Pg and mini-Pg substrates. A molecular model of the SK.kringle 5 complex identifies the putative interactions involved in LBS-dependent Pg substrate recognition.

摘要

链激酶(SK)通过构象变化激活纤维蛋白溶解系统的中心酶原——纤溶酶原(Pg)。SK.Pg*催化复合物将Pg作为特异性底物结合,并将其裂解为纤溶酶(Pm),Pm与SK结合形成SK.Pm复合物,从而促进Pm的生成。催化复合物的形成依赖于Pg/Pm kringle与SK羧基末端Lys(414)之间的赖氨酸结合位点(LBS)相互作用。Pg底物识别也依赖于LBS,但尚未确定负责的kringle和SK结构元件。在解决构象和蛋白水解性Pg激活的动力学研究中,对SK中Lys(414)缺失且β结构域250环中带电荷残基被丙氨酸取代的突变体进行了评估。用Arg(253)、Lys(256)和Lys(257)被丙氨酸取代的SK激活[Lys]Pg和微型Pg(仅包含Pg的kringle 5),结果显示Pm生成的双分子速率常数降低,对于SK Lys(256)/Lys(257)双突变体几乎完全抑制。牛Pg(BPg)与含有荧光标记Pm的SK.Pm复合物的结合证明了LBS依赖性的SK.标记Pm.BPg三元复合物的组装,而BPg不与含有SK Lys(256)/Lys(257)突变体的复合物结合。BPg被SK.Pm激活,其米氏常数(K(m))与BPg结合形成三元复合物的解离常数(K(D))无法区分,而SK Lys(256)/Lys(257)突变体不支持BPg的激活。我们得出结论,SK残基Arg(253)、Lys(256)和Lys(257)通过[Lys]Pg和微型Pg底物的kringle 5介导Pg底物识别。SK.kringle 5复合物的分子模型确定了参与LBS依赖性Pg底物识别的假定相互作用。

相似文献

3
Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism.
J Biol Chem. 2014 Oct 3;289(40):28006-18. doi: 10.1074/jbc.M114.589077. Epub 2014 Aug 19.
4
Role of the streptokinase alpha-domain in the interactions of streptokinase with plasminogen and plasmin.
J Biol Chem. 2005 Mar 4;280(9):7504-10. doi: 10.1074/jbc.M411637200. Epub 2004 Dec 28.
7
Resolution of conformational activation in the kinetic mechanism of plasminogen activation by streptokinase.
J Biol Chem. 2004 Aug 27;279(35):36633-41. doi: 10.1074/jbc.M405264200. Epub 2004 Jun 23.

引用本文的文献

1
Targeted drug delivery to the thrombus by fusing streptokinase with a fibrin-binding peptide (CREKA): an study.
Ther Deliv. 2024;15(6):399-411. doi: 10.4155/tde-2023-0107. Epub 2024 Apr 30.
2
Thrombolytic Enzymes of Microbial Origin: A Review.
Int J Mol Sci. 2021 Sep 28;22(19):10468. doi: 10.3390/ijms221910468.
3
Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy.
Front Mol Biosci. 2021 May 28;8:680397. doi: 10.3389/fmolb.2021.680397. eCollection 2021.
5
Structural Biology and Protein Engineering of Thrombolytics.
Comput Struct Biotechnol J. 2019 Jul 2;17:917-938. doi: 10.1016/j.csbj.2019.06.023. eCollection 2019.
6
The β-domain of streptokinase affects several functionalities, including specific/proteolytic activity kinetics.
FEBS Open Bio. 2019 Jul;9(7):1259-1269. doi: 10.1002/2211-5463.12657. Epub 2019 May 30.
7
Design of a DNA-Programmed Plasminogen Activator.
J Am Chem Soc. 2018 Nov 14;140(45):15516-15524. doi: 10.1021/jacs.8b10166. Epub 2018 Nov 1.
8
Pathogen activators of plasminogen.
J Thromb Haemost. 2015 Jun;13 Suppl 1(0 1):S106-14. doi: 10.1111/jth.12939.
9
Full time course kinetics of the streptokinase-plasminogen activation pathway.
J Biol Chem. 2013 Oct 11;288(41):29482-93. doi: 10.1074/jbc.M113.477935. Epub 2013 Aug 22.

本文引用的文献

1
Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation.
J Biol Chem. 2008 Sep 19;283(38):26137-47. doi: 10.1074/jbc.M804038200. Epub 2008 Jul 25.
2
Role of the 88-97 loop in plasminogen activation by streptokinase probed through site-specific mutagenesis.
Biochim Biophys Acta. 2008 Sep;1784(9):1310-8. doi: 10.1016/j.bbapap.2008.05.013. Epub 2008 Jun 6.
6
Role of the streptokinase alpha-domain in the interactions of streptokinase with plasminogen and plasmin.
J Biol Chem. 2005 Mar 4;280(9):7504-10. doi: 10.1074/jbc.M411637200. Epub 2004 Dec 28.
8
Plasminogen is a critical host pathogenicity factor for group A streptococcal infection.
Science. 2004 Aug 27;305(5688):1283-6. doi: 10.1126/science.1101245.
9
Resolution of conformational activation in the kinetic mechanism of plasminogen activation by streptokinase.
J Biol Chem. 2004 Aug 27;279(35):36633-41. doi: 10.1074/jbc.M405264200. Epub 2004 Jun 23.
10
Coupling of conformational and proteolytic activation in the kinetic mechanism of plasminogen activation by streptokinase.
J Biol Chem. 2004 Aug 27;279(35):36642-9. doi: 10.1074/jbc.M405265200. Epub 2004 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验