Suppr超能文献

链激酶激活纤溶酶原动力学机制中构象激活与蛋白水解激活的偶联

Coupling of conformational and proteolytic activation in the kinetic mechanism of plasminogen activation by streptokinase.

作者信息

Boxrud Paul D, Bock Paul E

机构信息

Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

出版信息

J Biol Chem. 2004 Aug 27;279(35):36642-9. doi: 10.1074/jbc.M405265200. Epub 2004 Jun 23.

Abstract

Binding of streptokinase (SK) to plasminogen (Pg) induces conformational activation of the zymogen and initiates its proteolytic conversion to plasmin (Pm). The mechanism of coupling between conformational activation and Pm formation was investigated in kinetic studies. Parabolic time courses of Pg activation by SK monitored by chromogenic substrate hydrolysis had initial rates (v(1)) representing conformational activation and subsequent rates of activity increase (v(2)) corresponding to the rate of Pm generation determined by a specific discontinuous assay. The v(2) dependence on SK concentration for [Lys]Pg showed a maximum rate at a Pg to SK ratio of approximately 2:1, with inhibition at high SK concentrations. [Glu]Pg and [Lys]Pg activation showed similar kinetic behavior but much slower activation of [Glu]Pg, due to an approximately 12-fold lower affinity for SK and an approximately 20-fold lower k(cat)/K(m). Blocking lysine-binding sites on Pg inhibited SK.Pg* cleavage of [Lys]Pg to a rate comparable with that of [Glu]Pg, whereas [Glu]Pg activation was not significantly affected. The results support a kinetic mechanism in which SK activates Pg conformationally by rapid equilibrium formation of the SK.Pg* complex, followed by intermolecular cleavage of Pg to Pm by SK.Pg* and subsequent cleavage of Pg by SK.Pm. A unified model of SK-induced Pg activation suggests that generation of initial Pm by SK.Pg* acts as a self-limiting triggering mechanism to initiate production of one SK equivalent of SK.Pm, which then converts the remaining free Pg to Pm.

摘要

链激酶(SK)与纤溶酶原(Pg)结合可诱导该酶原的构象活化,并启动其向纤溶酶(Pm)的蛋白水解转化过程。在动力学研究中,对构象活化与Pm形成之间的偶联机制进行了研究。通过发色底物水解监测SK对Pg的活化过程,其抛物线型时间进程具有代表构象活化的初始速率(v(1)),以及随后活性增加的速率(v(2)),该速率与通过特定的间断测定法确定的Pm生成速率相对应。对于[赖氨酸]Pg,v(2)对SK浓度的依赖性在Pg与SK的比例约为2:1时显示出最大速率,在高SK浓度下受到抑制。[谷氨酸]Pg和[赖氨酸]Pg的活化表现出相似的动力学行为,但[谷氨酸]Pg的活化要慢得多,这是由于其对SK的亲和力低约12倍,k(cat)/K(m)低约20倍。阻断Pg上的赖氨酸结合位点可抑制SK.Pg对[赖氨酸]Pg的切割,使其速率与[谷氨酸]Pg的切割速率相当,而[谷氨酸]Pg的活化则未受到显著影响。这些结果支持了一种动力学机制,即SK通过快速平衡形成SK.Pg复合物使Pg发生构象活化,随后SK.Pg将Pg分子间切割为Pm,接着SK.Pm再切割Pg。SK诱导Pg活化的统一模型表明,SK.Pg产生的初始Pm作为一种自我限制的触发机制,启动产生相当于一个SK当量的SK.Pm,然后将剩余的游离Pg转化为Pm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验