Chen Lei, Jiao Zhi-Hao, Zheng Li-Sha, Zhang Yuan-Yuan, Xie Shu-Tao, Wang Zhi-Xin, Wu Jia-Wei
MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
Nature. 2009 Jun 25;459(7250):1146-9. doi: 10.1038/nature08075. Epub 2009 May 27.
The AMP-activated protein kinase (AMPK) is characterized by its ability to bind to AMP, which enables it to adjust enzymatic activity by sensing the cellular energy status and maintain the balance between ATP production and consumption in eukaryotic cells. It also has important roles in the regulation of cell growth and proliferation, and in the establishment and maintenance of cell polarity. These important functions have rendered AMPK an important drug target for obesity, type 2 diabetes and cancer treatments. However, the regulatory mechanism of AMPK activity by AMP binding remains unsolved. Here we report the crystal structures of an unphosphorylated fragment of the AMPK alpha-subunit (KD-AID) from Schizosaccharomyces pombe that contains both the catalytic kinase domain and an autoinhibitory domain (AID), and of a phosphorylated kinase domain from Saccharomyces cerevisiae (Snf1-pKD). The AID binds, from the 'backside', to the hinge region of its kinase domain, forming contacts with both amino-terminal and carboxy-terminal lobes. Structural analyses indicate that AID binding might constrain the mobility of helix alphaC, hence resulting in an autoinhibited KD-AID with much lower kinase activity than that of the kinase domain alone. AMP activates AMPK both allosterically and by inhibiting dephosphorylation. Further in vitro kinetic studies demonstrate that disruption of the KD-AID interface reverses the autoinhibition and these AMPK heterotrimeric mutants no longer respond to the change in AMP concentration. The structural and biochemical data have shown the primary mechanism of AMPK autoinhibition and suggest a conformational switch model for AMPK activation by AMP.
AMP 激活的蛋白激酶(AMPK)的特点是能够结合 AMP,这使其能够通过感知细胞能量状态来调节酶活性,并维持真核细胞中 ATP 产生与消耗之间的平衡。它在细胞生长和增殖的调节以及细胞极性的建立和维持中也发挥着重要作用。这些重要功能使 AMPK 成为肥胖、2 型糖尿病和癌症治疗的重要药物靶点。然而,AMP 结合对 AMPK 活性的调节机制仍未解决。在此,我们报告了来自粟酒裂殖酵母的 AMPK α 亚基未磷酸化片段(KD-AID)的晶体结构,该片段包含催化激酶结构域和自抑制结构域(AID),以及来自酿酒酵母的磷酸化激酶结构域(Snf1-pKD)的晶体结构。AID 从“背面”与其激酶结构域的铰链区结合,与氨基末端和羧基末端叶均形成接触。结构分析表明,AID 结合可能会限制 αC 螺旋的移动性,从而导致 KD-AID 自抑制,其激酶活性远低于单独的激酶结构域。AMP 通过变构作用和抑制去磷酸化来激活 AMPK。进一步的体外动力学研究表明,KD-AID 界面的破坏会逆转自抑制,并且这些 AMPK 异源三聚体突变体不再对 AMP 浓度的变化做出反应。结构和生化数据揭示了 AMPK 自抑制的主要机制,并提出了 AMP 激活 AMPK 的构象转换模型。