Suppr超能文献

AMP 激活的蛋白激酶自身抑制的动力学机制。

The dynamical mechanism of auto-inhibition of AMP-activated protein kinase.

机构信息

MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

PLoS Comput Biol. 2011 Jul;7(7):e1002082. doi: 10.1371/journal.pcbi.1002082. Epub 2011 Jul 21.

Abstract

We use a novel normal mode analysis of an elastic network model drawn from configurations generated during microsecond all-atom molecular dynamics simulations to analyze the mechanism of auto-inhibition of AMP-activated protein kinase (AMPK). A recent X-ray and mutagenesis experiment (Chen, et al Nature 2009, 459, 1146) of the AMPK homolog S. Pombe sucrose non-fermenting 1 (SNF1) has proposed a new conformational switch model involving the movement of the kinase domain (KD) between an inactive unphosphorylated open state and an active or semi-active phosphorylated closed state, mediated by the autoinhibitory domain (AID), and a similar mutagenesis study showed that rat AMPK has the same auto-inhibition mechanism. However, there is no direct dynamical evidence to support this model and it is not clear whether other functionally important local structural components are equally inhibited. By using the same SNF1 KD-AID fragment as that used in experiment, we show that AID inhibits the catalytic function by restraining the KD into an unproductive open conformation, thereby limiting local structural rearrangements, while mutations that disrupt the interactions between the KD and AID allow for both the local structural rearrangement and global interlobe conformational transition. Our calculations further show that the AID also greatly impacts the structuring and mobility of the activation loop.

摘要

我们使用一种新颖的弹性网络模型的正则模态分析,该模型源自微秒全原子分子动力学模拟中生成的构象,以分析 AMP 激活蛋白激酶 (AMPK) 自身抑制的机制。最近(Chen 等人,自然 2009 年,459,1146)对 AMPK 同系物 S. Pombe 蔗糖非发酵 1(SNF1)的 X 射线和突变实验提出了一种新的构象开关模型,涉及激酶结构域(KD)在无磷酸化的非活性开放状态和有磷酸化的活性或半活性的封闭状态之间的运动,由自动抑制结构域(AID)介导,类似的突变研究表明,大鼠 AMPK 具有相同的自身抑制机制。然而,没有直接的动力学证据支持这种模型,也不清楚其他功能上重要的局部结构成分是否同样受到抑制。我们使用与实验中相同的 SNF1 KD-AID 片段表明,AID 通过将 KD 限制在非生产性的开放构象中来抑制催化功能,从而限制局部结构重排,而破坏 KD 和 AID 之间相互作用的突变允许局部结构重排和全局叶间构象转变。我们的计算进一步表明,AID 还极大地影响激活环的结构和流动性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验