Gritsenko Oleg V, Baerends Evert Jan
Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
Phys Chem Chem Phys. 2009 Jun 14;11(22):4640-6. doi: 10.1039/b903123e. Epub 2009 Apr 23.
Time-dependent density functional (response) theory (TDDF(R)T) is applied almost exclusively in its adiabatic approximation (ATDDFT), which is restricted to predominantly single electronic excitations and neglects additional roots of the TDDFT eigenvalue problem stemming from the interaction between single and double excitations. We incorporate the effect of the latter interaction into a non-adiabatic frequency-dependent and spatially non-local Hartree-exchange-correlation (Hxc) kernel fCEDAHxc (r1, r2, omega), the explicit analytical expression of which is derived for interacting single and double excitations well separated from the other excitations, within the common energy denominator approximation (CEDA) for the Kohn-Sham (KS) and interacting density response functions, chis and chi, respectively. The kernel fCEDAHxc (r1, r2, omega) obtained from the direct analytical inverse of chiCEDAs and chiCEDA is a sum of the delta-function and non-local orbital-dependent spatial terms with frequency-dependent factors, with which fCEDAHxc acquires a modulated quadratic dependence on omega. The effective incorporation in fCEDAHxc of the complete manifold of excited states (through the delta function term) represents an extension of the kernel reported by Maitra, Zhang, Cave, and Burke [J. Chem. Phys., 2004, 120, 5932]. In the TDDFT eigenvalue equations considered in the diagonal approximation, fCEDAHxc generates two excitation energies omegaq and omegaq+1, which both correspond to the same single KS excitation omegasq, thus producing the effect of the single-double excitation interaction.
含时密度泛函(响应)理论(TDDF(R)T)几乎仅在其绝热近似(ATDDFT)中应用,该近似局限于主要为单电子激发,且忽略了由于单激发与双激发之间相互作用而产生的TDDFT本征值问题的其他根。我们将后一种相互作用的效应纳入一个非绝热频率相关且空间非局域的哈特里-交换-关联(Hxc)核fCEDAHxc(r1, r2, ω),其显式解析表达式是在分别针对Kohn-Sham(KS)和相互作用密度响应函数χs和χ的公共能量分母近似(CEDA)内,为与其他激发很好分离的相互作用单激发和双激发推导出来的。从χCEDAs和χCEDA的直接解析逆得到的核fCEDAHxc(r1, r2, ω)是δ函数与具有频率相关因子的非局域轨道相关空间项的和,由此fCEDAHxc对ω呈现出调制的二次依赖关系。在完整激发态流形中通过δ函数项有效纳入fCEDAHxc表示对Maitra、Zhang、Cave和Burke [《化学物理杂志》,2004年,120,5932]所报道核的扩展。在对角近似中考虑的TDDFT本征值方程中,fCEDAHxc产生两个激发能量ωq和ωq+1,它们都对应于相同的单KS激发ωsq,从而产生单-双激发相互作用的效应。