Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
J Chem Phys. 2011 Jan 21;134(3):034120. doi: 10.1063/1.3517312.
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
最近引入的时变精确交换(TDEXX)方法,即基于时间相关密度泛函理论的响应方法,对频率相关的交换核进行精确处理,被重新表述。在重新表述的 TDEXX 方法版本中,可以通过求解线性广义特征值问题来计算电子激发能,而在原始的 TDEXX 方法版本中,在计算每个激发能时需要进行繁琐的频率迭代。新的 TDEXX 特征值方程的最低特征值,对应于最低激发能,可以通过例如适用于广义特征值问题的 Davidson 算法的版本来有效地获得。或者,借助于新的 TDEXX 特征值方程的级数展开式,可以使用用于大型正则特征值问题的标准特征值求解器,例如标准的 Davidson 算法,来有效地计算最低激发能。借助于级数展开式,还分析了 TDEXX 方法与时间相关 Hartree-Fock 之间的关系。讨论了几种除了在 TDEXX 方法中精确处理交换之外还考虑相关性的方法,例如,Kohn-Sham 能级的缩放、包含(半)局部近似相关势,或者精确交换核与绝热局部密度近似内的核的混合。考虑了分子乙烯、乙醛和吡啶的最低激发态作为例子。