Suppr超能文献

血清生物标志物真的能检测出乳腺癌吗?

Do serum biomarkers really measure breast cancer?

作者信息

Jesneck Jonathan L, Mukherjee Sayan, Yurkovetsky Zoya, Clyde Merlise, Marks Jeffrey R, Lokshin Anna E, Lo Joseph Y

机构信息

Duke Advanced Imaging Labs, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

BMC Cancer. 2009 May 28;9:164. doi: 10.1186/1471-2407-9-164.

Abstract

BACKGROUND

Because screening mammography for breast cancer is less effective for premenopausal women, we investigated the feasibility of a diagnostic blood test using serum proteins.

METHODS

This study used a set of 98 serum proteins and chose diagnostically relevant subsets via various feature-selection techniques. Because of significant noise in the data set, we applied iterated Bayesian model averaging to account for model selection uncertainty and to improve generalization performance. We assessed generalization performance using leave-one-out cross-validation (LOOCV) and receiver operating characteristic (ROC) curve analysis.

RESULTS

The classifiers were able to distinguish normal tissue from breast cancer with a classification performance of AUC = 0.82 +/- 0.04 with the proteins MIF, MMP-9, and MPO. The classifiers distinguished normal tissue from benign lesions similarly at AUC = 0.80 +/- 0.05. However, the serum proteins of benign and malignant lesions were indistinguishable (AUC = 0.55 +/- 0.06). The classification tasks of normal vs. cancer and normal vs. benign selected the same top feature: MIF, which suggests that the biomarkers indicated inflammatory response rather than cancer.

CONCLUSION

Overall, the selected serum proteins showed moderate ability for detecting lesions. However, they are probably more indicative of secondary effects such as inflammation rather than specific for malignancy.

摘要

背景

由于乳腺癌筛查乳腺X线摄影对绝经前女性的效果较差,我们研究了使用血清蛋白进行诊断性血液检测的可行性。

方法

本研究使用了一组98种血清蛋白,并通过各种特征选择技术选择了与诊断相关的子集。由于数据集中存在显著噪声,我们应用迭代贝叶斯模型平均法来考虑模型选择的不确定性并提高泛化性能。我们使用留一法交叉验证(LOOCV)和受试者工作特征(ROC)曲线分析来评估泛化性能。

结果

分类器能够使用巨噬细胞迁移抑制因子(MIF)、基质金属蛋白酶-9(MMP-9)和髓过氧化物酶(MPO)等蛋白质,以AUC = 0.82±0.04的分类性能区分正常组织和乳腺癌。分类器以AUC = 0.80±0.05的性能同样能够区分正常组织和良性病变。然而,良性和恶性病变的血清蛋白无法区分(AUC = 0.55±0.06)。正常与癌症以及正常与良性的分类任务选择了相同的顶级特征:MIF,这表明生物标志物指示的是炎症反应而非癌症。

结论

总体而言,所选血清蛋白在检测病变方面表现出中等能力。然而,它们可能更指示炎症等继发效应,而非特异性地针对恶性肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea5c/2696469/661637ac5dc7/1471-2407-9-164-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验