Suppr超能文献

相似文献

4
Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.
Radiology. 2007 Aug;244(2):390-8. doi: 10.1148/radiol.2442060712. Epub 2007 Jun 11.
6
A probabilistic expert system that provides automated mammographic-histologic correlation: initial experience.
AJR Am J Roentgenol. 2004 Feb;182(2):481-8. doi: 10.2214/ajr.182.2.1820481.
8
Performance assessment for radiologists interpreting screening mammography.
Stat Med. 2007 Mar 30;26(7):1532-51. doi: 10.1002/sim.2633.
9
The influence of mammographic technologists on radiologists' ability to interpret screening mammograms in community practice.
Acad Radiol. 2015 Mar;22(3):278-89. doi: 10.1016/j.acra.2014.09.013. Epub 2014 Nov 27.
10
A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network.
Eur Radiol. 2020 May;30(5):3023-3033. doi: 10.1007/s00330-019-06610-0. Epub 2020 Jan 31.

引用本文的文献

2
Bayesian Networks in Radiology.
Radiol Artif Intell. 2023 Sep 27;5(6):e210187. doi: 10.1148/ryai.210187. eCollection 2023 Nov.
3
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients.
PNAS Nexus. 2023 Apr 13;2(5):pgad133. doi: 10.1093/pnasnexus/pgad133. eCollection 2023 May.
4
Breast Cancer Segmentation Methods: Current Status and Future Potentials.
Biomed Res Int. 2021 Jul 20;2021:9962109. doi: 10.1155/2021/9962109. eCollection 2021.
5
Using Sequential Decision Making to Improve Lung Cancer Screening Performance.
IEEE Access. 2019;7:119403-119419. doi: 10.1109/ACCESS.2019.2935763. Epub 2019 Aug 16.
6
A decision support system for mammography reports interpretation.
Health Inf Sci Syst. 2020 Apr 1;8(1):17. doi: 10.1007/s13755-020-00109-5. eCollection 2020 Dec.
7
Generating Reward Functions Using IRL Towards Individualized Cancer Screening.
Artif Intell Health (2018). 2019;11326:213-227. doi: 10.1007/978-3-030-12738-1_16. Epub 2019 Feb 21.
8
A Deep Learning-Based Decision Support Tool for Precision Risk Assessment of Breast Cancer.
JCO Clin Cancer Inform. 2019 May;3:1-12. doi: 10.1200/CCI.18.00121.
9
A Probabilistic Model to Support Radiologists' Classification Decisions in Mammography Practice.
Med Decis Making. 2019 Apr;39(3):208-216. doi: 10.1177/0272989X19832914. Epub 2019 Feb 28.

本文引用的文献

2
Influence of computer-aided detection on performance of screening mammography.
N Engl J Med. 2007 Apr 5;356(14):1399-409. doi: 10.1056/NEJMoa066099.
3
Current status and future directions of computer-aided diagnosis in mammography.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):224-35. doi: 10.1016/j.compmedimag.2007.02.009. Epub 2007 Mar 26.
4
Bayesian networks of BI-RADStrade mark descriptors for breast lesion classification.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:3031-4. doi: 10.1109/IEMBS.2004.1403858.
5
Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy.
Radiology. 2007 Feb;242(2):388-95. doi: 10.1148/radiol.2422052130.
7
Prospective breast cancer risk prediction model for women undergoing screening mammography.
J Natl Cancer Inst. 2006 Sep 6;98(17):1204-14. doi: 10.1093/jnci/djj331.
8
Assessing breast cancer risk: evolution of the Gail Model.
J Natl Cancer Inst. 2006 Sep 6;98(17):1172-3. doi: 10.1093/jnci/djj365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验