Burnside Elizabeth S, Davis Jesse, Chhatwal Jagpreet, Alagoz Oguzhan, Lindstrom Mary J, Geller Berta M, Littenberg Benjamin, Shaffer Katherine A, Kahn Charles E, Page C David
Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252, USA.
Radiology. 2009 Jun;251(3):663-72. doi: 10.1148/radiol.2513081346. Epub 2009 Apr 14.
To determine whether a Bayesian network trained on a large database of patient demographic risk factors and radiologist-observed findings from consecutive clinical mammography examinations can exceed radiologist performance in the classification of mammographic findings as benign or malignant.
The institutional review board exempted this HIPAA-compliant retrospective study from requiring informed consent. Structured reports from 48 744 consecutive pooled screening and diagnostic mammography examinations in 18 269 patients from April 5, 1999 to February 9, 2004 were collected. Mammographic findings were matched with a state cancer registry, which served as the reference standard. By using 10-fold cross validation, the Bayesian network was tested and trained to estimate breast cancer risk by using demographic risk factors (age, family and personal history of breast cancer, and use of hormone replacement therapy) and mammographic findings recorded in the Breast Imaging Reporting and Data System lexicon. The performance of radiologists compared with the Bayesian network was evaluated by using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity.
The Bayesian network significantly exceeded the performance of interpreting radiologists in terms of AUC (0.960 vs 0.939, P = .002), sensitivity (90.0% vs 85.3%, P < .001), and specificity (93.0% vs 88.1%, P < .001).
On the basis of prospectively collected variables, the evaluated Bayesian network can predict the probability of breast cancer and exceed interpreting radiologist performance. Bayesian networks may help radiologists improve mammographic interpretation.
确定基于大量患者人口统计学风险因素数据库以及连续临床乳腺钼靶检查中放射科医生观察到的结果所训练的贝叶斯网络,在将乳腺钼靶检查结果分类为良性或恶性方面是否能超过放射科医生的表现。
机构审查委员会豁免了这项符合健康保险流通与责任法案(HIPAA)的回顾性研究的知情同意要求。收集了1999年4月5日至2004年2月9日期间18269例患者的48744次连续汇总筛查和诊断性乳腺钼靶检查的结构化报告。乳腺钼靶检查结果与作为参考标准的州癌症登记处进行匹配。通过使用10倍交叉验证,对贝叶斯网络进行测试和训练,以利用人口统计学风险因素(年龄、乳腺癌家族史和个人史以及激素替代疗法的使用)和乳腺影像报告和数据系统词汇表中记录的乳腺钼靶检查结果来估计乳腺癌风险。通过使用受试者操作特征曲线(AUC)下的面积、敏感性和特异性来评估放射科医生与贝叶斯网络相比的表现。
在AUC(0.960对0.939,P = 0.002)、敏感性(90.0%对85.3%,P < 0.001)和特异性(93.0%对88.1%,P < 0.001)方面,贝叶斯网络显著超过了解读放射科医生的表现。
基于前瞻性收集的变量,所评估的贝叶斯网络可以预测乳腺癌的概率并超过解读放射科医生的表现。贝叶斯网络可能有助于放射科医生改进乳腺钼靶解读。