Droste Susanne K, Collins Andrew, Lightman Stafford L, Linthorst Astrid C E, Reul Johannes M H M
Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Clinical Science South Bristol, University of Bristol, Bristol BS1 3NY, United Kingdom.
Endocrinology. 2009 Sep;150(9):4170-9. doi: 10.1210/en.2009-0402. Epub 2009 May 28.
Previous work has shown that allowing rats to voluntarily exercise in a running wheel for 4 wk modifies the hypothalamic-pituitary-adrenal axis and behavioral coping responses to stress. To investigate whether long-term voluntary exercise would also affect the free, biologically active fraction of corticosterone in the brain, we conducted an in vivo microdialysis study in the hippocampus of rats. We monitored both the baseline circadian and ultradian patterns of corticosterone in hippocampus dialysates over the diurnal cycle and the responses to forced swim and novelty stress at different stages of exercise. Exercise for 1 d, 2 d, or 1 wk did not affect baseline circadian and ultradian pulse parameters or stress-induced hippocampal free corticosterone concentrations suggesting that acute or short-term periods of exercise do not affect baseline and stress-induced hormone levels. Baseline hormone parameters in 4 wk exercised rats, however, showed significantly increased pulse amplitudes (+108%) and mean free corticosterone levels (+42%) between 1500 and 2100 h but not between 0900 and 1500 h. Surprisingly, although our previous work showed substantial changes in stress-evoked plasma (total) corticosterone responses in long-term exercised animals, no differences in stress-induced hippocampal free hormone responses could be observed between exercised and sedentary animals. This lack of differences was not caused by compensatory changes in plasma corticosteroid-binding-globulin binding levels in exercising rats. Thus, long-term exercising rats show anticipatory increases in glucocorticoid output before the start of the active phase. These rats also reveal the putative existence of a containment mechanism preventing overexposure of the brain to glucocorticoid hormones.
先前的研究表明,让大鼠在跑轮中自愿运动4周会改变下丘脑 - 垂体 - 肾上腺轴以及对应激的行为应对反应。为了研究长期自愿运动是否也会影响大脑中游离的、具有生物活性的皮质酮部分,我们在大鼠海马体中进行了一项体内微透析研究。我们监测了海马体透析液中皮质酮在昼夜周期的基线昼夜节律和超昼夜模式,以及在运动不同阶段对强迫游泳和新奇应激的反应。运动1天、2天或1周对基线昼夜节律和超昼夜脉冲参数或应激诱导的海马体游离皮质酮浓度没有影响,这表明急性或短期运动不会影响基线和应激诱导的激素水平。然而,在1500至2100小时之间,运动4周的大鼠的基线激素参数显示脉冲幅度显著增加(+108%),平均游离皮质酮水平显著增加(+42%),但在0900至1500小时之间没有变化。令人惊讶的是,尽管我们之前的研究表明长期运动的动物应激诱发的血浆(总)皮质酮反应有显著变化,但在运动组和久坐组动物之间未观察到应激诱导的海马体游离激素反应存在差异。这种差异的缺乏不是由运动大鼠血浆皮质类固醇结合球蛋白结合水平的代偿性变化引起的。因此,长期运动的大鼠在活跃期开始前糖皮质激素输出会出现预期性增加。这些大鼠还揭示了一种可能存在的抑制机制,可防止大脑过度暴露于糖皮质激素。