Suppr超能文献

莱茵衣藻在通过硫缺乏诱导厌氧产氢后的代谢组

The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.

作者信息

Matthew Timmins, Zhou Wenxu, Rupprecht Jens, Lim Lysha, Thomas-Hall Skye R, Doebbe Anja, Kruse Olaf, Hankamer Ben, Marx Ute C, Smith Steven M, Schenk Peer M

机构信息

School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.

出版信息

J Biol Chem. 2009 Aug 28;284(35):23415-25. doi: 10.1074/jbc.M109.003541. Epub 2009 May 28.

Abstract

The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H(2)) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate energy reserves during the first 24 h of sulfur depletion. In addition to the previously reported accumulation of starch, large amounts of triacylglycerides were deposited in the cells. During the early 24- to 72-h time period fermentative energy metabolism lowered the pH, H(2) was produced, and amino acid levels generally increased. In the final phase from 72 to 120 h, metabolism slowed down leading to a stabilization of pH, even though some starch and most triacylglycerides remained. We conclude that H(2) production does not slow down due to depletion of energy reserves but rather due to loss of essential functions resulting from sulfur depletion or due to a build-up of the toxic fermentative products formate and ethanol.

摘要

利用核磁共振光谱法、气相色谱-质谱联用技术和薄层色谱法,对莱茵衣藻这种模式生物在120小时缺硫过程中的代谢组进行了分析,以诱导厌氧产氢。结果表明,这些单细胞绿藻在缺硫的前24小时消耗培养基中新添加的乙酸盐以积累能量储备。除了先前报道的淀粉积累外,细胞中还沉积了大量的三酰甘油。在最初的24至72小时期间,发酵能量代谢降低了pH值,产生了氢气,氨基酸水平普遍升高。在最后的72至120小时阶段,代谢减缓导致pH值稳定,尽管仍有一些淀粉和大部分三酰甘油留存。我们得出结论,产氢减缓并非由于能量储备耗尽,而是由于缺硫导致基本功能丧失,或由于有毒发酵产物甲酸盐和乙醇的积累。

相似文献

1
The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.
J Biol Chem. 2009 Aug 28;284(35):23415-25. doi: 10.1074/jbc.M109.003541. Epub 2009 May 28.
5
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
J Biol Chem. 2010 Sep 24;285(39):30247-60. doi: 10.1074/jbc.M110.122812. Epub 2010 Jun 25.
8
Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
Planta. 2008 Jan;227(2):397-407. doi: 10.1007/s00425-007-0626-8. Epub 2007 Sep 21.
9
Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.
Planta. 2012 Apr;235(4):729-45. doi: 10.1007/s00425-011-1537-2. Epub 2011 Oct 22.
10
A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
J Biotechnol. 2007 Mar 10;128(4):776-87. doi: 10.1016/j.jbiotec.2006.12.025. Epub 2007 Jan 13.

引用本文的文献

2
Metabolomic response to high light from pgrl1 and pgr5 mutants of Chlamydomonas reinhardtii.
Photochem Photobiol Sci. 2023 Nov;22(11):2635-2650. doi: 10.1007/s43630-023-00478-2. Epub 2023 Sep 26.
5
Influence of nutrient status on the biohydrogen and lipid productivity in Parachlorella kessleri: a biorefinery approach.
Appl Microbiol Biotechnol. 2020 Dec;104(23):10293-10305. doi: 10.1007/s00253-020-10930-3. Epub 2020 Oct 6.
6
8
Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga .
Front Plant Sci. 2017 Dec 15;8:2154. doi: 10.3389/fpls.2017.02154. eCollection 2017.
9
Recovery from N Deprivation Is a Transcriptionally and Functionally Distinct State in .
Plant Physiol. 2018 Mar;176(3):2007-2023. doi: 10.1104/pp.17.01546. Epub 2017 Dec 29.
10
Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.
PLoS One. 2017 May 24;12(5):e0177292. doi: 10.1371/journal.pone.0177292. eCollection 2017.

本文引用的文献

3
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.
J Gen Physiol. 1942 Nov 20;26(2):219-40. doi: 10.1085/jgp.26.2.219.
4
Phylogenetic and molecular analysis of hydrogen-producing green algae.
J Exp Bot. 2009;60(6):1691-702. doi: 10.1093/jxb/erp052. Epub 2009 Apr 2.
5
Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.
J Biol Chem. 2009 Mar 13;284(11):7201-13. doi: 10.1074/jbc.M803917200. Epub 2008 Dec 31.
7
Nitrate assimilation in Chlamydomonas.
Eukaryot Cell. 2008 Apr;7(4):555-9. doi: 10.1128/EC.00431-07. Epub 2008 Feb 29.
8
Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
Planta. 2008 Jan;227(2):397-407. doi: 10.1007/s00425-007-0626-8. Epub 2007 Sep 21.
10
Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
Planta. 2007 Oct;226(5):1075-86. doi: 10.1007/s00425-007-0609-9. Epub 2007 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验