Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Photosynth Res. 2022 Dec;154(3):397-411. doi: 10.1007/s11120-022-00945-4. Epub 2022 Aug 16.
Clean and sustainable H production is crucial to a carbon-neutral world. H generation by Chlamydomonas reinhardtii is an attractive approach for solar-H from HO. However, it is currently not large-scalable because of lacking desirable strains with both optimal H productivity and sufficient knowledge of underlying molecular mechanism. We hereby carried out extensive and in-depth investigations of H photoproduction of hpm91 mutant lacking PGR5 (Proton Gradient Regulation 5) toward its up-scaling and fundamental mechanism issues. We show that hpm91 is at least 100-fold scalable (up to 10 L) with continuous H collection of 7287 ml H/10L-HPBR in averagely 26 days under sulfur deprivation. Also, we show that hpm91 is robust and active during sustained H photoproduction, most likely due to decreased intracellular ROS relative to wild type. Moreover, we obtained quantitative proteomic profiles of wild type and hpm91 at four representing time points of H evolution, leading to 2229 and 1350 differentially expressed proteins, respectively. Compared to wild type, major proteome alterations of hpm91 include not only core subunits of photosystems and those related to anti-oxidative responses but also essential proteins in photosynthetic antenna, C/N metabolic balance, and sulfur assimilation toward both cysteine biosynthesis and sulfation of metabolites during sulfur-deprived H production. These results reveal not only new insights of cellular and molecular basis of enhanced H production in hpm91 but also provide additional candidate gene targets and modules for further genetic modifications and/or in artificial photosynthesis mimics toward basic and applied research aiming at advancing solar-H technology.
清洁和可持续的氢气生产对于碳中和的世界至关重要。通过莱茵衣藻产生氢气是一种从水中获取太阳能制氢的有吸引力的方法。然而,由于缺乏兼具最佳氢气生产力和足够的基础分子机制知识的理想菌株,目前还不能大规模生产。我们对缺乏 PGR5(质子梯度调节 5)的 hpm91 突变体的氢气光生产进行了广泛而深入的研究,以解决其放大和基础机制问题。我们表明,hpm91 至少可以放大 100 倍(最高可达 10 L),在缺硫条件下,平均 26 天内可连续收集 7287 ml H/10L-HPBR 的氢气,达到 7287 ml H/10L-HPBR。此外,我们表明 hpm91 在持续的氢气光生产过程中具有很强的活性和稳定性,这很可能是由于与野生型相比,细胞内的 ROS 减少。此外,我们在氢气演化的四个代表性时间点获得了野生型和 hpm91 的定量蛋白质组学图谱,分别得到 2229 和 1350 个差异表达蛋白。与野生型相比,hpm91 的主要蛋白质组变化不仅包括光合作用系统的核心亚基和与抗氧化反应相关的亚基,还包括光合作用天线、C/N 代谢平衡以及硫同化的必需蛋白,这些蛋白在缺硫条件下的氢气生产过程中对半胱氨酸生物合成和代谢物的硫酸化都有重要作用。这些结果不仅揭示了 hpm91 中增强氢气生产的细胞和分子基础的新见解,还为进一步的遗传修饰提供了额外的候选基因靶点和模块,或在人工光合作用模拟中,为基础和应用研究提供了进一步的候选基因靶点和模块,旨在推进太阳能制氢技术的发展。