Guharoy Mainak, Chakrabarti Pinak
Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta, 700054, India.
J Comput Aided Mol Des. 2009 Sep;23(9):645-54. doi: 10.1007/s10822-009-9282-3. Epub 2009 May 29.
We report a simple algorithm to scan interfaces in protein-protein complexes for identifying binding 'hot spots'. The change in side-chain solvent accessible area (DeltaASA) of interface residues has been related to change in binding energy due to mutating interface residues to Ala (DeltaDeltaG (X --> ALA)) based on two criteria-hydrogen bonding across the interface and location in the interface core-both of which are major determinants in specific, high-affinity binding. These relationships are used to predict the energetic contribution of individual interface residues. The predictions are tested against 462 experimental X --> ALA mutations from 28 interfaces with an average unsigned error of 1.04 kcal/mol. More than 80% of interface hot spots (with experimental DeltaDeltaG > or = 2 kcal/mol) could be identified as being energetically important. From the experimental values, Asp, Lys, Tyr and Trp are found to contribute most of the binding energy, burying >45 A2 on average. The method described here would be useful to understand and interfere with protein interactions by assessing the energetic importance of individual interface residues.
我们报告了一种简单的算法,用于扫描蛋白质-蛋白质复合物中的界面以识别结合“热点”。基于两个标准——跨界面的氢键形成和在界面核心中的位置(这两者都是特异性高亲和力结合的主要决定因素),界面残基的侧链溶剂可及面积变化(ΔASA)与由于将界面残基突变为丙氨酸导致的结合能变化(ΔΔG(X→ALA))相关。这些关系用于预测单个界面残基的能量贡献。针对来自28个界面的462个实验性X→ALA突变进行了预测测试,平均无符号误差为1.04 kcal/mol。超过80%的界面热点(实验性ΔΔG≥2 kcal/mol)可被确定为在能量上具有重要意义。从实验值来看,发现天冬氨酸、赖氨酸、酪氨酸和色氨酸贡献了大部分结合能,平均埋藏面积>45 Ų。本文所述方法通过评估单个界面残基的能量重要性,对于理解和干扰蛋白质相互作用将是有用的。