Suppr超能文献

基于局部和全局强度拟合能量驱动的活动轮廓模型及其在脑部磁共振图像分割中的应用

Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation.

作者信息

Wang Li, Li Chunming, Sun Quansen, Xia Deshen, Kao Chiu-Yen

机构信息

School of Computer Science & Technology, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Comput Med Imaging Graph. 2009 Oct;33(7):520-31. doi: 10.1016/j.compmedimag.2009.04.010. Epub 2009 May 30.

Abstract

In this paper, we propose an improved region-based active contour model in a variational level set formulation. We define an energy functional with a local intensity fitting term, which induces a local force to attract the contour and stops it at object boundaries, and an auxiliary global intensity fitting term, which drives the motion of the contour far away from object boundaries. Therefore, the combination of these two forces allows for flexible initialization of the contours. This energy is then incorporated into a level set formulation with a level set regularization term that is necessary for accurate computation in the corresponding level set method. The proposed model is first presented as a two-phase level set formulation and then extended to a multi-phase formulation. Experimental results show the advantages of our method in terms of accuracy and robustness. In particular, our method has been applied to brain MR image segmentation with desirable results.

摘要

在本文中,我们提出了一种变分水平集公式下改进的基于区域的主动轮廓模型。我们定义了一个能量泛函,它带有一个局部强度拟合项,该项会产生一个局部力来吸引轮廓并使其在物体边界处停止,还有一个辅助全局强度拟合项,该项驱动轮廓远离物体边界运动。因此,这两种力的结合使得轮廓能够灵活初始化。然后,该能量被纳入到一个水平集公式中,其中的水平集正则化项对于相应水平集方法中的精确计算是必要的。所提出的模型首先以两相水平集公式呈现,然后扩展到多相公式。实验结果表明了我们方法在准确性和鲁棒性方面的优势。特别是,我们的方法已应用于脑部磁共振图像分割,并取得了理想的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验