一种用于脑磁共振图像偏置场估计和分割的改进可能性模糊 C 均值聚类算法。
A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image.
机构信息
The School of Computer Science and Technology, Nanjing University of Science and Technology, No. 200, Xiao Ling Wei Street, Nanjing 210094, China.
出版信息
Comput Med Imaging Graph. 2011 Jul;35(5):383-97. doi: 10.1016/j.compmedimag.2010.12.001. Epub 2011 Jan 22.
A modified possibilistic fuzzy c-means clustering algorithm is presented for fuzzy segmentation of magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities and noise. By introducing a novel adaptive method to compute the weights of local spatial in the objective function, the new adaptive fuzzy clustering algorithm is capable of utilizing local contextual information to impose local spatial continuity, thus allowing the suppression of noise and helping to resolve classification ambiguity. To estimate the intensity inhomogeneity, the global intensity is introduced into the coherent local intensity clustering algorithm and takes the local and global intensity information into account. The segmentation target therefore is driven by two forces to smooth the derived optimal bias field and improve the accuracy of the segmentation task. The proposed method has been successfully applied to 3 T, 7 T, synthetic and real MR images with desirable results. Comparisons with other approaches demonstrate the superior performance of the proposed algorithm. Moreover, the proposed algorithm is robust to initialization, thereby allowing fully automatic applications.
提出了一种改进的可能性模糊 c-均值聚类算法,用于对磁共振(MR)图像进行模糊分割,这些图像受到强度不均匀性和噪声的影响。通过在目标函数中引入一种新的自适应方法来计算局部空间的权重,新的自适应模糊聚类算法能够利用局部上下文信息来施加局部空间连续性,从而能够抑制噪声并有助于解决分类歧义。为了估计强度不均匀性,将全局强度引入相干局部强度聚类算法中,并考虑局部和全局强度信息。因此,分割目标由两种力驱动,以平滑导出的最优偏差场并提高分割任务的准确性。所提出的方法已成功应用于 3T、7T、合成和真实的 MR 图像,结果令人满意。与其他方法的比较表明了所提出算法的优越性能。此外,该算法对初始化具有鲁棒性,因此允许完全自动应用。