Suppr超能文献

盲源分离增强脑磁图记录的频谱和非线性特征。在阿尔茨海默病中的应用。

Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer's disease.

作者信息

Escudero Javier, Hornero Roberto, Abásolo Daniel, Fernández Alberto

机构信息

Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Camino del Cementerio s/n, 47011 Valladolid, Spain.

出版信息

Med Eng Phys. 2009 Sep;31(7):872-9. doi: 10.1016/j.medengphy.2009.04.003. Epub 2009 May 23.

Abstract

This work studied whether a blind source separation (BSS) and component selection procedure could increase the differences between Alzheimer's disease (AD) patients and control subjects' spectral and non-linear features of magnetoencephalogram (MEG) recordings. MEGs were acquired with a 148-channel whole-head magnetometer from 62 subjects (36 AD patients and 26 controls), who were divided randomly into training and test sets. MEGs were decomposed using the algorithm for multiple unknown signals extraction (AMUSE). The extracted AMUSE components were characterised with two spectral--median frequency and spectral entropy (SpecEn)--and two non-linear features: Lempel-Ziv complexity (LZC) and sample entropy (SampEn). One-way analysis of variance with age as a covariate was applied to the training set to decide which components had the most significant differences between groups. Then, partial reconstructions of the MEGs were computed with these significant components. In the test set, the accuracy and area under the ROC curve (AUC) associated with each partial reconstruction of the MEGs were compared with the case where no BSS-preprocessing was applied. This preprocessing increased the AUCs between 0.013 and 0.227, while the accuracy for SpecEn, LZC and SampEn rose between 6.4% and 22.6%, improving the separation between AD patients and control subjects.

摘要

这项研究探讨了盲源分离(BSS)和成分选择程序是否能够增加阿尔茨海默病(AD)患者与对照受试者脑磁图(MEG)记录的频谱和非线性特征之间的差异。使用148通道全头磁强计对62名受试者(36名AD患者和26名对照)进行MEG记录,并将他们随机分为训练集和测试集。采用多未知信号提取算法(AMUSE)对MEG进行分解。提取的AMUSE成分通过两个频谱特征——中频和频谱熵(SpecEn)——以及两个非线性特征进行表征:莱姆-齐夫复杂度(LZC)和样本熵(SampEn)。将年龄作为协变量进行单向方差分析,应用于训练集,以确定哪些成分在组间具有最显著的差异。然后,使用这些显著成分对MEG进行部分重建。在测试集中,将与MEG每次部分重建相关的准确率和ROC曲线下面积(AUC)与未进行BSS预处理的情况进行比较。这种预处理使AUC增加了0.013至0.227,而SpecEn、LZC和SampEn的准确率提高了6.4%至22.6%,改善了AD患者与对照受试者之间的区分度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验