Biomedical Engineering Group, E.T.S.I. Telecomunicación, University of Valladolid, 47011, Valladolid, Spain.
Med Eng Phys. 2010 Dec;32(10):1137-44. doi: 10.1016/j.medengphy.2010.08.005. Epub 2010 Sep 15.
Blind source separation (BSS) is widely used to analyse brain recordings like the magnetoencephalogram (MEG). However, few studies have compared different BSS decompositions of real brain data. Those comparisons were usually limited to specific applications. Therefore, we aimed at studying the consistency (i.e., similarity) of the decompositions estimated for real MEGs from 26 subjects using five widely used BSS algorithms (AMUSE, SOBI, JADE, extended-Infomax and FastICA) for five epoch lengths (10s, 20s, 40s, 60s and 90s). A statistical criterion based on Factor Analysis was applied to calculate the number of components into which each epoch would be decomposed. Then, the BSS techniques were applied. The results indicate that the pair of algorithms 'AMUSE-SOBI', followed by 'JADE-FastICA', provided the most similar separations. On the other hand, the most dissimilar outcomes were computed with 'AMUSE-JADE' and 'SOBI-JADE'. The BSS decompositions were more similar for longer epochs. Furthermore, additional analyses of synthetic signals supported the results of the real MEGs. Thus, when selecting BSS algorithms to explore brain signals, the techniques offering the most different decompositions, such as AMUSE and JADE, may be preferred to obtain complementary, or at least different, perspectives of the underlying components.
盲源分离 (BSS) 广泛应用于分析脑记录,如脑磁图 (MEG)。然而,很少有研究比较过真实脑数据的不同 BSS 分解。这些比较通常仅限于特定的应用。因此,我们旨在研究使用五种广泛使用的 BSS 算法(AMUSE、SOBI、JADE、扩展 Infomax 和 FastICA)对 26 名受试者的真实 MEG 进行 5 个epoch 长度(10s、20s、40s、60s 和 90s)的估计分解的一致性(即相似性)。基于因子分析的统计标准被应用于计算每个 epoch 将被分解成的成分数量。然后,BSS 技术被应用。结果表明,算法对 'AMUSE-SOBI',其次是 'JADE-FastICA',提供了最相似的分离。另一方面,用 'AMUSE-JADE' 和 'SOBI-JADE' 计算出的结果最不相似。较长的 epoch 会使 BSS 分解更加相似。此外,对合成信号的额外分析支持了真实 MEG 结果。因此,当选择 BSS 算法来探索脑信号时,选择提供最不同分解的技术,如 AMUSE 和 JADE,可能有助于获得潜在成分的互补或至少不同的视角。