IEEE Trans Cybern. 2013 Dec;43(6):2105-13. doi: 10.1109/TCYB.2013.2240384.
The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.
该研究引入了一种在信息粒化存在的情况下实现的映射概念,并提供了一个支持这种映射形成的设计框架。信息粒是在大量可用于构建模型的实验输入-输出数值数据的基础上形成的有概念意义的实体。我们开发了一种在概念上和算法上都合理的形成信息粒的方法。考虑到要形成的映射的方向性,在形成信息粒时需要考虑到这个方向性方面。方向性意味着,虽然输入空间中的信息粒可以具有很大的灵活性,但在输出空间中形成的信息粒必须与输入空间中构建的信息粒内在相关。输入空间通过运行聚类算法进行粒化;为了说明问题,这里的重点是使用模糊 C-均值算法实现的模糊聚类。输出空间中的信息粒是借助合理粒度原则(这是粒计算的基本概念追求之一)构建的。该构造具有两个重要特征。首先,构建的信息粒是在输入空间中已经构建的信息粒的存在下形成的(这种实现反映了从输入到输出空间的映射的方向)。其次,合理粒度原则并不将信息粒的实现局限于单一形式主义,例如模糊集,而是有助于形成以任何所需的信息粒化形式主义表达的粒。粒度映射的质量(即形成于输入和输出空间中的信息粒的映射实现)用覆盖标准来表示(阐明粒度映射为任何输入实验数据产生的信息粒“覆盖”实验数据的程度)。通过报告一些参数研究,量化了粒度映射的性能(以覆盖和特异性标准来表示),以及通过合理粒度原则构建输出信息粒时使用的某些参数的值之间的关系。覆盖-特异性依赖关系的图有助于确定一个拐点,并在粒度映射质量的两个冲突要求之间达成合理的妥协。此外,还量化了映射的质量与信息粒的数量(意味着映射的某种粒度)之间的关系。还报告了一系列实验。