Institut National de la Recherche Scientifique (INRS-EMT), Montréal, Quebec, Canada.
IEEE Trans Image Process. 2011 Feb;20(2):545-57. doi: 10.1109/TIP.2010.2066982. Epub 2010 Aug 16.
The purpose of this study is to investigate multiregion graph cut image partitioning via kernel mapping of the image data. The image data is transformed implicitly by a kernel function so that the piecewise constant model of the graph cut formulation becomes applicable. The objective function contains an original data term to evaluate the deviation of the transformed data, within each segmentation region, from the piecewise constant model, and a smoothness, boundary preserving regularization term. The method affords an effective alternative to complex modeling of the original image data while taking advantage of the computational benefits of graph cuts. Using a common kernel function, energy minimization typically consists of iterating image partitioning by graph cut iterations and evaluations of region parameters via fixed point computation. A quantitative and comparative performance assessment is carried out over a large number of experiments using synthetic grey level data as well as natural images from the Berkeley database. The effectiveness of the method is also demonstrated through a set of experiments with real images of a variety of types such as medical, synthetic aperture radar, and motion maps.
本研究旨在通过对图像数据的核映射来研究多区域图割图像分割。通过核函数对图像数据进行隐式变换,使得图割公式的分段常数模型变得适用。目标函数包含一个原始数据项,用于评估变换后数据在每个分割区域内偏离分段常数模型的程度,以及一个平滑、保边正则化项。该方法提供了一种有效的替代方法,可以在利用图割计算优势的同时,对原始图像数据进行复杂的建模。使用常见的核函数,能量最小化通常包括通过图割迭代迭代图像分区,以及通过定点计算评估区域参数。通过使用大量的合成灰度数据以及来自伯克利数据库的自然图像进行定量和比较性能评估。该方法还通过一组具有各种类型的真实图像(如医学、合成孔径雷达和运动地图)的实验得到了验证。