Suppr超能文献

光合复合物中强耦合粒子数和相干性的林德布拉德方程。

Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes.

作者信息

Palmieri Benoit, Abramavicius Darius, Mukamel Shaul

机构信息

Department of Chemistry, University of California, Irvine, California 92697-2025, USA.

出版信息

J Chem Phys. 2009 May 28;130(20):204512. doi: 10.1063/1.3142485.

Abstract

Recent experimental observations of time-resolved multidimensional signals in the light-harvesting antennae Fenna-Mathews-Olson [G. S. Engel et al., Nature (London) 446, 782 (2007)] show large oscillations of exciton populations coupled to the long-lived coherences. These effects may not be reproduced by the standard Redfield theory which assumes weak coupling to a bath. A more general relaxation superoperator which holds for all system-bath coupling parameter regimes is constructed by taking into account the statistics (covariances) of Lindblad equation parameters. Simulations for a model dimer reproduce all observed strong coupling effects.

摘要

近期对光捕获天线芬纳 - 马修斯 - 奥尔森中时间分辨多维信号的实验观测[G. S. 恩格尔等人,《自然》(伦敦)446, 782 (2007)]表明,与长寿命相干性耦合的激子布居存在大幅振荡。这些效应可能无法由假设与热库弱耦合的标准雷德菲尔德理论再现。通过考虑林德布拉德方程参数的统计量(协方差),构建了一个适用于所有系统 - 热库耦合参数范围的更通用的弛豫超算符。对一个模型二聚体的模拟再现了所有观测到的强耦合效应。

相似文献

1
Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes.
J Chem Phys. 2009 May 28;130(20):204512. doi: 10.1063/1.3142485.
2
Unravelling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy.
Biophys J. 2008 May 1;94(9):3613-9. doi: 10.1529/biophysj.107.123455. Epub 2008 Jan 11.
4
Origin of long-lived coherences in light-harvesting complexes.
J Phys Chem B. 2012 Jun 28;116(25):7449-54. doi: 10.1021/jp304649c. Epub 2012 Jun 14.
5
Environment-assisted quantum walks in photosynthetic energy transfer.
J Chem Phys. 2008 Nov 7;129(17):174106. doi: 10.1063/1.3002335.
7
Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.
Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3638-57. doi: 10.1098/rsta.2011.0224.
8
Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
J Phys Chem A. 2012 Jan 12;116(1):282-9. doi: 10.1021/jp2088109. Epub 2011 Dec 22.
10
The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy.
Phys Chem Chem Phys. 2014 Jun 7;16(21):9930-9. doi: 10.1039/c3cp54634a. Epub 2014 Jan 16.

引用本文的文献

2
Investigating Non-Markovian Effects on Quantum Dynamics in Open Quantum Systems.
J Chem Theory Comput. 2025 Jun 24;21(12):5778-5788. doi: 10.1021/acs.jctc.4c01632. Epub 2025 Jun 12.
3
Plasmon mediated coherent population oscillations in molecular aggregates.
Nat Commun. 2023 Dec 5;14(1):8035. doi: 10.1038/s41467-023-43578-4.
4
Signature of Quantum Coherence in the Exciton Energy Pathways of the LH2 Photosynthetic Complex.
ACS Omega. 2023 Oct 11;8(42):38871-38878. doi: 10.1021/acsomega.3c02676. eCollection 2023 Oct 24.
6
Tight inner ring architecture and quantum motion of nuclei enable efficient energy transfer in bacterial light harvesting.
Sci Adv. 2022 Oct 28;8(43):eadd0023. doi: 10.1126/sciadv.add0023. Epub 2022 Oct 26.
7
Optimal Energy Transfer in Light-Harvesting Systems.
Molecules. 2015 Aug 20;20(8):15224-72. doi: 10.3390/molecules200815224.
8
Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton.
J Phys Chem B. 2013 Oct 31;117(43):13631-8. doi: 10.1021/jp4075493. Epub 2013 Oct 16.
9
Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex.
Biophys J. 2012 Feb 8;102(3):649-60. doi: 10.1016/j.bpj.2011.12.021. Epub 2012 Feb 7.
10
Ultrafast double-quantum-coherence spectroscopy of excitons with entangled photons.
Phys Rev A. 2010 Jul 19;28(1):138201-138207. doi: 10.1103/PhysRevA.82.013820.

本文引用的文献

3
Environment-assisted quantum walks in photosynthetic energy transfer.
J Chem Phys. 2008 Nov 7;129(17):174106. doi: 10.1063/1.3002335.
4
Unravelling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy.
Biophys J. 2008 May 1;94(9):3613-9. doi: 10.1529/biophysj.107.123455. Epub 2008 Jan 11.
5
Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
Nature. 2007 Apr 12;446(7137):782-6. doi: 10.1038/nature05678.
6
The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes.
Q Rev Biophys. 2006 Aug;39(3):227-324. doi: 10.1017/S0033583506004434. Epub 2006 Oct 12.
7
Markovian approximation in the relaxation of open quantum systems.
J Phys Chem B. 2005 Nov 17;109(45):21399-405. doi: 10.1021/jp051303o.
8
Spectral trends in the fluorescence of single bacterial light-harvesting complexes: experiments and modified redfield simulations.
Biophys J. 2006 Apr 1;90(7):2475-85. doi: 10.1529/biophysj.105.075903. Epub 2006 Jan 6.
9
Unraveling the photosystem I reaction center: a history, or the sum of many efforts.
Photosynth Res. 2004;80(1-3):109-24. doi: 10.1023/B:PRES.0000030657.88242.e1.
10
Two-dimensional spectroscopy of electronic couplings in photosynthesis.
Nature. 2005 Mar 31;434(7033):625-8. doi: 10.1038/nature03429.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验