Suppr超能文献

紧密的内环结构和原子核的量子运动使得细菌光捕获中的能量转移高效进行。

Tight inner ring architecture and quantum motion of nuclei enable efficient energy transfer in bacterial light harvesting.

作者信息

Kundu Sohang, Dani Reshmi, Makri Nancy

机构信息

Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.

Department of Physics, University of Illinois, Urbana, IL 61801, USA.

出版信息

Sci Adv. 2022 Oct 28;8(43):eadd0023. doi: 10.1126/sciadv.add0023. Epub 2022 Oct 26.

Abstract

The efficient, directional transfer of absorbed solar energy between photosynthetic light-harvesting complexes continues to pose intriguing questions. In this work, we identify the pathways of energy flow between the B800 and B850 rings in the LH2 complex of using fully quantum mechanical path integral methods to simulate the excited-state dynamics of the 24 bacteriochlorophyll molecules and their coupling to 50 normal mode vibrations in each chromophore. While all pigments are identical, the tighter packing of the inner B850 ring is responsible for the thermodynamic stabilization of the inner ring. Molecular vibrations enable the 1-ps flow of energy to the B850 states, which would otherwise be kinetically inaccessible. A classical treatment of the vibrations leads to uniform equilibrium distribution of the excitation, with only 67% transferred to the inner ring. However, spontaneous fluctuations associated with the quantum motion of the nuclei increase the transfer efficiency to 90%.

摘要

光合光捕获复合物之间吸收太阳能的高效、定向转移仍然存在一些有趣的问题。在这项工作中,我们使用完全量子力学路径积分方法来模拟24个细菌叶绿素分子的激发态动力学及其与每个发色团中50个简正模式振动的耦合,从而确定了LH2复合物中B800和B850环之间的能量流动途径。虽然所有色素都是相同的,但内部B850环更紧密的堆积导致了内环的热力学稳定。分子振动使得能量能够在1皮秒内流向B850态,否则在动力学上是无法实现的。对振动的经典处理导致激发的均匀平衡分布,只有67%转移到内环。然而,与原子核量子运动相关的自发涨落将转移效率提高到了90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1408/9604522/969c598ff76f/sciadv.add0023-f1.jpg

相似文献

1
Tight inner ring architecture and quantum motion of nuclei enable efficient energy transfer in bacterial light harvesting.
Sci Adv. 2022 Oct 28;8(43):eadd0023. doi: 10.1126/sciadv.add0023. Epub 2022 Oct 26.
3
The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum.
Structure. 1996 May 15;4(5):581-97. doi: 10.1016/s0969-2126(96)00063-9.
4
Coherence Maps and Flow of Excitation Energy in the Bacterial Light Harvesting Complex 2.
J Phys Chem Lett. 2023 Apr 27;14(16):3835-3843. doi: 10.1021/acs.jpclett.3c00670. Epub 2023 Apr 17.
5
Excitation Energy Transfer from Bacteriochlorophyll in the B800 Site to B850 Bacteriochlorophyll in Light-Harvesting Complex 2.
J Phys Chem B. 2021 Mar 4;125(8):2009-2017. doi: 10.1021/acs.jpcb.0c09605. Epub 2021 Feb 19.
6
Energy Transfer Dynamics in Light-Harvesting Complex 2 Variants Containing Oxidized B800 Bacteriochlorophyll .
J Phys Chem B. 2021 Jul 1;125(25):6830-6836. doi: 10.1021/acs.jpcb.1c01592. Epub 2021 Jun 17.
8
Reconstitution of 3-Acetyl Chlorophyll into Light-Harvesting Complex 2 from the Purple Photosynthetic Bacterium .
ACS Omega. 2020 Mar 18;5(12):6817-6825. doi: 10.1021/acsomega.0c00152. eCollection 2020 Mar 31.
10
Coherence in the B800 ring of purple bacteria LH2.
Phys Rev Lett. 2006 Jan 20;96(2):028103. doi: 10.1103/PhysRevLett.96.028103. Epub 2006 Jan 17.

引用本文的文献

1
Macroscale optimal size of ICM vesicles regulated by quantum design principle in LH2 structure.
Biophys J. 2025 Jul 15;124(14):2317-2326. doi: 10.1016/j.bpj.2025.06.004. Epub 2025 Jun 7.
2
Nuclear quantum effects slow down the energy transfer in biological light-harvesting complexes.
Sci Adv. 2025 Jun 6;11(23):eadw4798. doi: 10.1126/sciadv.adw4798.
4
Variational Quantum Algorithm for Non-Markovian Quantum Dynamics Using an Ensemble of Ehrenfest Trajectories.
J Phys Chem Lett. 2025 Jan 30;16(4):1001-1006. doi: 10.1021/acs.jpclett.4c03431. Epub 2025 Jan 22.
6
Quantum information scrambling and chemical reactions.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2321668121. doi: 10.1073/pnas.2321668121. Epub 2024 Apr 1.
7
Exact Non-Markovian Quantum Dynamics on the NISQ Device Using Kraus Operators.
ACS Omega. 2024 Feb 15;9(8):9666-9675. doi: 10.1021/acsomega.3c09720. eCollection 2024 Feb 27.
8
Living on the edge: light-harvesting efficiency and photoprotection in the core of green sulfur bacteria.
Phys Chem Chem Phys. 2023 Jul 19;25(28):18698-18710. doi: 10.1039/d3cp01321a.

本文引用的文献

2
Intramolecular Vibrations in Excitation Energy Transfer: Insights from Real-Time Path Integral Calculations.
Annu Rev Phys Chem. 2022 Apr 20;73:349-375. doi: 10.1146/annurev-physchem-090419-120202. Epub 2022 Jan 26.
4
Small Matrix Path Integral with Extended Memory.
J Chem Theory Comput. 2021 Jan 12;17(1):1-6. doi: 10.1021/acs.jctc.0c00987. Epub 2020 Dec 2.
5
Real-Time Path Integral Simulation of Exciton-Vibration Dynamics in Light-Harvesting Bacteriochlorophyll Aggregates.
J Phys Chem Lett. 2020 Oct 15;11(20):8783-8789. doi: 10.1021/acs.jpclett.0c02760. Epub 2020 Oct 1.
6
Small Matrix Path Integral for System-Bath Dynamics.
J Chem Theory Comput. 2020 Jul 14;16(7):4038-4049. doi: 10.1021/acs.jctc.0c00039. Epub 2020 Jun 15.
7
Quantum biology revisited.
Sci Adv. 2020 Apr 3;6(14):eaaz4888. doi: 10.1126/sciadv.aaz4888. eCollection 2020 Apr.
9
Comparison of the Energy-Transfer Rates in Structural and Spectral Variants of the B800-850 Complex from Purple Bacteria.
J Phys Chem B. 2020 Feb 27;124(8):1460-1469. doi: 10.1021/acs.jpcb.9b11899. Epub 2020 Feb 14.
10
Modular path integral for discrete systems with non-diagonal couplings.
J Chem Phys. 2019 Aug 21;151(7):074110. doi: 10.1063/1.5108692.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验