Destainville Nicolas, Manghi Manoel, Palmeri John
Université de Toulouse, Université Paul Sabatier, Laboratoire de Physique Théorique (Institut de Recherche sur Systèmes Atomiques et Moléculaires Complexes), Toulouse, France.
Biophys J. 2009 Jun 3;96(11):4464-9. doi: 10.1016/j.bpj.2009.03.035.
By exploring a recent model in which DNA bending elasticity, described by the wormlike chain model, is coupled to basepair denaturation, we demonstrate that small denaturation bubbles lead to anomalies in the flexibility of DNA at the nanometric scale, when confined in two dimensions (2D), as reported in atomic-force microscopy experiments. Our model yields very good fits to experimental data and quantitative predictions that can be tested experimentally. Although such anomalies exist when DNA fluctuates freely in three dimensions (3D), they are too weak to be detected. Interactions between bases in the helical double-stranded DNA are modified by electrostatic adsorption on a 2D substrate, which facilitates local denaturation. This work reconciles the apparent discrepancy between observed 2D and 3D DNA elastic properties and points out that conclusions about the 3D properties of DNA (and its companion proteins and enzymes) do not directly follow from 2D experiments by atomic-force microscopy.
通过探索一种最近的模型,其中由蠕虫状链模型描述的DNA弯曲弹性与碱基对变性相耦合,我们证明,如原子力显微镜实验所报道的,当二维(2D)受限的时候,小的变性泡会导致纳米尺度下DNA柔韧性的异常。我们的模型与实验数据和可通过实验检验的定量预测非常吻合。尽管当DNA在三维(3D)中自由波动时也存在这种异常,但它们太微弱而无法被检测到。螺旋双链DNA中碱基之间的相互作用通过二维底物上的静电吸附而改变,这促进了局部变性。这项工作调和了观察到的二维和三维DNA弹性特性之间明显的差异,并指出关于DNA(及其伴随的蛋白质和酶)三维特性的结论不能直接从原子力显微镜的二维实验得出。