Suppr超能文献

通过在张力下对超螺旋进行建模来探测短尺度上 DNA 的弹性。

Probing the elasticity of DNA on short length scales by modeling supercoiling under tension.

机构信息

CC Bioinformatics, University of Applied Sciences Stralsund, Stralsund, Germany.

出版信息

Biophys J. 2012 Jul 18;103(2):323-30. doi: 10.1016/j.bpj.2012.05.050. Epub 2012 Jul 17.

Abstract

The wormlike-chain (WLC) model is widely used to describe the energetics of DNA bending. Motivated by recent experiments, alternative, so-called subelastic chain models were proposed that predict a lower elastic energy of highly bent DNA conformations. Until now, no unambiguous verification of these models has been obtained because probing the elasticity of DNA on short length scales remains challenging. Here we investigate the limits of the WLC model using coarse-grained Monte Carlo simulations to model the supercoiling of linear DNA molecules under tension. At a critical supercoiling density, the DNA extension decreases abruptly due to the sudden formation of a plectonemic structure. This buckling transition is caused by the large energy required to form the tightly bent end-loop of the plectoneme and should therefore provide a sensitive benchmark for model evaluation. Although simulations based on the WLC energetics could quantitatively reproduce the buckling measured in magnetic tweezers experiments, the buckling almost disappears for the tested linear subelastic chain model. Thus, our data support the validity of a harmonic bending potential even for small bending radii down to 3.5 nm.

摘要

蠕虫链(WLC)模型被广泛用于描述 DNA 弯曲的能量学。受最近实验的启发,提出了替代的、所谓的亚弹性链模型,这些模型预测高度弯曲的 DNA 构象具有更低的弹性能量。到目前为止,还没有得到这些模型的明确验证,因为在短尺度上探测 DNA 的弹性仍然具有挑战性。在这里,我们使用粗粒度的蒙特卡罗模拟来研究 WLC 模型的极限,以模拟张力下线性 DNA 分子的超螺旋。在一个临界超螺旋密度下,由于 plectonemic 结构的突然形成,DNA 延伸突然减少。这种屈曲转变是由形成 plectoneme 紧密弯曲的末端环所需的大量能量引起的,因此应该为模型评估提供一个敏感的基准。尽管基于 WLC 能量学的模拟可以定量重现磁镊实验中测量到的屈曲,但对于测试的线性亚弹性链模型,屈曲几乎消失了。因此,我们的数据支持甚至对于小弯曲半径(低至 3.5nm)的弯曲,也支持谐波弯曲势能的有效性。

相似文献

1
Probing the elasticity of DNA on short length scales by modeling supercoiling under tension.
Biophys J. 2012 Jul 18;103(2):323-30. doi: 10.1016/j.bpj.2012.05.050. Epub 2012 Jul 17.
2
The influence of salt on the structure and energetics of supercoiled DNA.
Biophys J. 1994 Dec;67(6):2146-66. doi: 10.1016/S0006-3495(94)80732-5.
3
Energetics at the DNA supercoiling transition.
Biophys J. 2010 Apr 7;98(7):1267-76. doi: 10.1016/j.bpj.2009.12.4292.
4
Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules.
Phys Rev Lett. 2008 Apr 11;100(14):148301. doi: 10.1103/PhysRevLett.100.148301. Epub 2008 Apr 8.
5
Coarse-grained modeling reveals the impact of supercoiling and loop length in DNA looping kinetics.
Biophys J. 2022 May 17;121(10):1949-1962. doi: 10.1016/j.bpj.2022.04.009. Epub 2022 Apr 11.
6
High flexibility of DNA on short length scales probed by atomic force microscopy.
Nat Nanotechnol. 2006 Nov;1(2):137-41. doi: 10.1038/nnano.2006.63. Epub 2006 Nov 3.
7
Generalized theory of semiflexible polymers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031906. doi: 10.1103/PhysRevE.73.031906. Epub 2006 Mar 7.
8
Extreme bendability of DNA double helix due to bending asymmetry.
J Chem Phys. 2015 Sep 14;143(10):104904. doi: 10.1063/1.4929994.
9
Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm.
Biophys J. 2007 Dec 15;93(12):4360-73. doi: 10.1529/biophysj.107.112995. Epub 2007 Aug 31.
10
Discontinuities at the DNA supercoiling transition.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):040901. doi: 10.1103/PhysRevE.80.040901. Epub 2009 Oct 15.

引用本文的文献

1
Exploring protein-mediated compaction of DNA by coarse-grained simulations and unsupervised learning.
Biophys J. 2024 Sep 17;123(18):3231-3241. doi: 10.1016/j.bpj.2024.07.023. Epub 2024 Jul 23.
2
DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling.
Front Microbiol. 2023 Oct 30;14:1192831. doi: 10.3389/fmicb.2023.1192831. eCollection 2023.
3
Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system.
Nat Commun. 2023 Jun 20;14(1):3654. doi: 10.1038/s41467-023-38790-1.
5
Probing the stability of the SpCas9-DNA complex after cleavage.
Nucleic Acids Res. 2021 Dec 2;49(21):12411-12421. doi: 10.1093/nar/gkab1072.
6
Dynamics of the Buckling Transition in Double-Stranded DNA and RNA.
Biophys J. 2020 Apr 7;118(7):1690-1701. doi: 10.1016/j.bpj.2020.01.049. Epub 2020 Feb 29.
7
DNA Mechanics and Topology.
Adv Exp Med Biol. 2018;1092:11-39. doi: 10.1007/978-3-319-95294-9_2.
8
The temperature dependence of the helical twist of DNA.
Nucleic Acids Res. 2018 Sep 6;46(15):7998-8009. doi: 10.1093/nar/gky599.
9
Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers.
Nucleic Acids Res. 2017 Jun 2;45(10):5920-5929. doi: 10.1093/nar/gkx280.
10
Simulation of DNA Supercoil Relaxation.
Biophys J. 2016 May 24;110(10):2176-84. doi: 10.1016/j.bpj.2016.03.041.

本文引用的文献

1
Multiplectoneme phase of double-stranded DNA under torsion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022706. doi: 10.1103/PhysRevE.88.022706. Epub 2013 Aug 12.
2
Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6106-11. doi: 10.1073/pnas.1113532109. Epub 2012 Apr 2.
3
Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011908. doi: 10.1103/PhysRevE.85.011908. Epub 2012 Jan 11.
4
Torque-induced deformations of charged elastic DNA rods: thin helices, loops, and precursors of DNA supercoiling.
J Biol Phys. 2011 Mar;37(2):227-38. doi: 10.1007/s10867-010-9211-7. Epub 2011 Jan 18.
5
The dependence of DNA supercoiling on solution electrostatics.
Acta Biomater. 2012 Jul;8(6):2133-43. doi: 10.1016/j.actbio.2012.01.030. Epub 2012 Feb 2.
6
Direct mechanical measurements reveal the material properties of three-dimensional DNA origami.
Nano Lett. 2011 Dec 14;11(12):5558-63. doi: 10.1021/nl203503s. Epub 2011 Nov 8.
8
Analytical description of extension, torque, and supercoiling radius of a stretched twisted DNA.
Phys Rev Lett. 2011 Apr 1;106(13):138104. doi: 10.1103/PhysRevLett.106.138104.
9
DNA-DNA interactions in tight supercoils are described by a small effective charge density.
Phys Rev Lett. 2010 Oct 8;105(15):158101. doi: 10.1103/PhysRevLett.105.158101. Epub 2010 Oct 4.
10
Sequence dependence of DNA bending rigidity.
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15421-6. doi: 10.1073/pnas.1004809107. Epub 2010 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验