Suppr超能文献

怀疑有肾肿块患者的双能量CT:虚拟平扫图像能否替代真实平扫图像?

Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images?

作者信息

Graser Anno, Johnson Thorsten R C, Hecht Elizabeth M, Becker Christoph R, Leidecker Christianne, Staehler Michael, Stief Christian G, Hildebrandt Henriette, Godoy Myrna C B, Finn Myra E, Stepansky Flora, Reiser Maximilian F, Macari Michael

机构信息

Department of Clinical Radiology, University of Munich-Grosshadern Campus, Marchioninistr 15, 81377 Munich, Germany.

出版信息

Radiology. 2009 Aug;252(2):433-40. doi: 10.1148/radiol.2522080557. Epub 2009 Jun 1.

Abstract

PURPOSE

To qualitatively and quantitatively compare virtual nonenhanced (VNE) data sets derived from dual-energy (DE) computed tomography (CT) with true nonenhanced (TNE) data sets in the same patients and to calculate potential radiation dose reductions for a dual-phase renal multidetector CT compared with a standard triple-phase protocol.

MATERIALS AND METHODS

This prospective study was approved by the institutional review board; all patients provided written informed consent. Seventy one men (age range, 30-88 years) and 39 women (age range, 22-87 years) underwent preoperative DE CT that included unenhanced, DE nephrographic, and delayed phases. DE CT parameters were 80 and 140 kV, 96 mAs (effective). Collimation was 14 x 1.2 mm. CT numbers were measured in renal parenchyma and tumor, liver, aorta, and psoas muscle. Image noise was measured on TNE and VNE images. Exclusion of relevant anatomy with the 26-cm field of view detector was quantified with a five-point scale (0 = none, 4 = >75%). Image quality and noise (1 = none, 5 = severe) and acceptability for VNE and TNE images were rated. Effective radiation doses for DE CT and TNE images were calculated. Differences were tested with a Student t test for paired samples.

RESULTS

Mean CT numbers (+/- standard deviation) on TNE and VNE images, respectively, for renal parenchyma were 30.8 HU +/- 4.0 and 31.6 HU +/- 7.1, P = .29; liver, 55.8 HU +/- 8.6 and 57.8 HU +/- 10.1, P = .11; aorta, 42.1 HU +/- 4.1 and 43.0 HU +/- 8.8, P = .16; psoas, 47.3 HU +/- 5.6 and 48.1 HU +/- 9.3 HU, P = .38. No exclusion of the contralateral kidney was seen in 50 patients, less than 25% was seen in 43, 25%-50% was seen in 13, and 50%-75% was seen in four. Mean image noise was 1.71 +/- 0.71 for VNE and 1.22 +/- 0.45 for TNE (P < .001); image quality was 1.70 HU +/- 0.72 for VNE and 1.15 HU +/- 0.36 for TNE (P < .0001). In all but three patients radiologists accepted VNE images as replacement for TNE images. Mean effective dose for DE CT scans of the abdomen was 5.21 mSv +/- 1.86 and that for nonenhanced scans was 4.97 mSv +/- 1.43. Mean dose reduction by omitting the TNE scan was 35.05%.

CONCLUSION

In patients with renal masses, DE CT can provide high-quality VNE data sets, which are a reasonable approximation of TNE data sets. Integration of DE scanning into a renal mass protocol will lower radiation exposure by 35%.

摘要

目的

对同一患者双能量(DE)计算机断层扫描(CT)生成的虚拟平扫(VNE)数据集与真实平扫(TNE)数据集进行定性和定量比较,并计算与标准三相扫描方案相比,双期肾脏多排CT扫描潜在的辐射剂量降低情况。

材料与方法

本前瞻性研究经机构审查委员会批准;所有患者均提供书面知情同意书。71名男性(年龄范围30 - 88岁)和39名女性(年龄范围22 - 87岁)接受术前DE CT检查,包括平扫、DE肾实质期和延迟期扫描。DE CT扫描参数为80和140 kV,96 mAs(有效剂量)。准直为14×1.2 mm。在肾实质、肿瘤、肝脏、主动脉和腰大肌中测量CT值。在TNE和VNE图像上测量图像噪声。使用五点量表(0 = 无,4 = >75%)对26 cm视野探测器排除相关解剖结构的情况进行量化。对VNE和TNE图像的图像质量、噪声(1 = 无,5 = 严重)及可接受性进行评分。计算DE CT和TNE图像的有效辐射剂量。采用配对样本t检验进行差异检验。

结果

肾实质在TNE和VNE图像上的平均CT值(±标准差)分别为30.8 HU±4.0和31.6 HU±7.1,P = 0.29;肝脏分别为55.8 HU±8.6和57.8 HU±10.1,P = 0.11;主动脉分别为42.1 HU±4.1和43.0 HU±8.8,P = 0.16;腰大肌分别为47.3 HU±5.6和48.1 HU±9.3 HU,P = 0.38。50例患者未出现对侧肾脏排除,43例患者排除少于25%,13例患者排除25% - 50%,4例患者排除50% - 75%。VNE图像的平均图像噪声为1.71±0.71,TNE图像为1.22±0.45(P < 0.001);VNE图像的图像质量为1.70 HU±0.72,TNE图像为1.15 HU±0.36(P < 0.0001)。除3例患者外,放射科医生均接受VNE图像替代TNE图像。腹部DE CT扫描的平均有效剂量为5.21 mSv±1.86,平扫扫描的平均有效剂量为4.97 mSv±1.43。省略TNE扫描后的平均剂量降低了35.05%。

结论

对于肾肿块患者,DE CT能够提供高质量的VNE数据集,其与TNE数据集具有合理的相似性。将DE扫描纳入肾肿块扫描方案可使辐射暴露降低35%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验