Liu Lirong, Fang Yaping, Li Menglong, Wang Cuicui
College of Chemistry, Key Laboratory of Green Chemistry & Technology, Ministry of Education, Sichuan University, Chengdu 610064, China.
Protein J. 2009 May;28(3-4):175-81. doi: 10.1007/s10930-009-9181-4.
Beta-turn is a secondary protein structure type that plays an important role in protein configuration and function. Here, we introduced an approach of beta-turn prediction that used the support vector machine (SVM) algorithm combined with predicted secondary structure information. The secondary structure information was obtained by using E-SSpred, a new secondary protein structure prediction method. A 7-fold cross validation based on the benchmark dataset of 426 non-homologous protein chains was used to evaluate the performance of our method. The prediction results broke the 80% Q (total) barrier and achieved Q (total) = 80.9%, MCC = 0.44, and Q (predicted) higher 0.9% when compared with the best method. The results in our research are coincident with the conclusion that beta-turn prediction accuracy can be improved by inclusion of secondary structure information.
β-转角是一种二级蛋白质结构类型,在蛋白质构象和功能中起着重要作用。在此,我们介绍了一种β-转角预测方法,该方法使用支持向量机(SVM)算法并结合预测的二级结构信息。二级结构信息通过使用E-SSpred(一种新的蛋白质二级结构预测方法)获得。基于426条非同源蛋白质链的基准数据集进行7折交叉验证,以评估我们方法的性能。预测结果突破了80%的Q(总计)障碍,与最佳方法相比,实现了Q(总计)=80.9%,马修斯相关系数(MCC)=0.44,且Q(预测)提高了0.9%。我们的研究结果与通过纳入二级结构信息可提高β-转角预测准确性这一结论相符。