Suppr超能文献

利用预测形状字符串和两层支持向量机模型提高 β-转角预测的性能。

Improving the performance of β-turn prediction using predicted shape strings and a two-layer support vector machine model.

机构信息

Department of Chemistry, Tongji University, Shanghai, 200092, China.

出版信息

BMC Bioinformatics. 2011 Jul 13;12:283. doi: 10.1186/1471-2105-12-283.

Abstract

BACKGROUND

The β-turn is a secondary protein structure type that plays an important role in protein configuration and function. Development of accurate prediction methods to identify β-turns in protein sequences is valuable. Several methods for β-turn prediction have been developed; however, the prediction quality is still a challenge and there is substantial room for improvement. Innovations of the proposed method focus on discovering effective features, and constructing a new architectural model.

RESULTS

We utilized predicted secondary structures, predicted shape strings and the position-specific scoring matrix (PSSM) as input features, and proposed a novel two-layer model to enhance the prediction. We achieved the highest values according to four evaluation measures, i.e. Q(total) = 87.2%, MCC = 0.66, Q(observed) = 75.9%, and Q(predicted) = 73.8% on the BT426 dataset. The results show that our proposed two-layer model discriminates better between β-turns and non-β-turns than the single model due to obtaining higher Q(predicted). Moreover, the predicted shape strings based on the structural alignment approach greatly improve the performance, and the same improvements were observed on BT547 and BT823 datasets as well.

CONCLUSION

In this article, we present a comprehensive method for the prediction of β-turns. Experiments show that the proposed method constitutes a great improvement over the competing prediction methods.

摘要

背景

β-转角是一种二级蛋白质结构类型,在蛋白质构象和功能中起着重要作用。开发准确的预测方法来识别蛋白质序列中的β-转角是有价值的。已经开发了几种β-转角预测方法;然而,预测质量仍然是一个挑战,还有很大的改进空间。所提出方法的创新点集中在发现有效特征和构建新的架构模型上。

结果

我们利用预测的二级结构、预测的形状字符串和位置特异性评分矩阵(PSSM)作为输入特征,并提出了一种新的两层模型来增强预测。我们在 BT426 数据集上根据四个评估指标达到了最高值,即 Q(total) = 87.2%、MCC = 0.66、Q(observed) = 75.9%和 Q(predicted) = 73.8%。结果表明,由于获得了更高的 Q(predicted),我们提出的两层模型比单一模型更好地区分β-转角和非β-转角。此外,基于结构比对的预测形状字符串极大地提高了性能,在 BT547 和 BT823 数据集上也观察到了相同的改进。

结论

在本文中,我们提出了一种全面的β-转角预测方法。实验表明,与竞争预测方法相比,所提出的方法有了很大的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b78/3155507/620825f23afc/1471-2105-12-283-1.jpg

相似文献

3
Predicting beta-turns in proteins using support vector machines with fractional polynomials.
Proteome Sci. 2013 Nov 7;11(Suppl 1):S5. doi: 10.1186/1477-5956-11-S1-S5.
4
A neural network method for prediction of beta-turn types in proteins using evolutionary information.
Bioinformatics. 2004 Nov 1;20(16):2751-8. doi: 10.1093/bioinformatics/bth322. Epub 2004 May 14.
5
Predicting β-turns in protein using kernel logistic regression.
Biomed Res Int. 2013;2013:870372. doi: 10.1155/2013/870372. Epub 2013 Feb 19.
7
Predicting turns in proteins with a unified model.
PLoS One. 2012;7(11):e48389. doi: 10.1371/journal.pone.0048389. Epub 2012 Nov 7.
8
Prediction of beta-turn in protein using E-SSpred and support vector machine.
Protein J. 2009 May;28(3-4):175-81. doi: 10.1007/s10930-009-9181-4.
9
A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile.
Biochimie. 2014 Feb;97:60-5. doi: 10.1016/j.biochi.2013.09.013. Epub 2013 Sep 22.
10
Using support vector machine to predict beta- and gamma-turns in proteins.
J Comput Chem. 2008 Sep;29(12):1867-75. doi: 10.1002/jcc.20929.

引用本文的文献

1
A deep dense inception network for protein beta-turn prediction.
Proteins. 2020 Jan;88(1):143-151. doi: 10.1002/prot.25780. Epub 2019 Jul 23.
2
Accurate prediction of protein relative solvent accessibility using a balanced model.
BioData Min. 2017 Jan 24;10:1. doi: 10.1186/s13040-016-0121-5. eCollection 2017.
4
Type I and II β-turns prediction using NMR chemical shifts.
J Biomol NMR. 2014 Jul;59(3):175-84. doi: 10.1007/s10858-014-9837-z. Epub 2014 May 17.
5
Predicting beta-turns in proteins using support vector machines with fractional polynomials.
Proteome Sci. 2013 Nov 7;11(Suppl 1):S5. doi: 10.1186/1477-5956-11-S1-S5.
6
NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.
PLoS One. 2013 Dec 23;8(12):e83532. doi: 10.1371/journal.pone.0083532. eCollection 2013.
7
DomHR: accurately identifying domain boundaries in proteins using a hinge region strategy.
PLoS One. 2013 Apr 11;8(4):e60559. doi: 10.1371/journal.pone.0060559. Print 2013.
8
Predicting turns in proteins with a unified model.
PLoS One. 2012;7(11):e48389. doi: 10.1371/journal.pone.0048389. Epub 2012 Nov 7.
9
DSP: a protein shape string and its profile prediction server.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W298-302. doi: 10.1093/nar/gks361. Epub 2012 May 2.
10
Retrieving backbone string neighbors provides insights into structural modeling of membrane proteins.
Mol Cell Proteomics. 2012 Jul;11(7):M111.016808. doi: 10.1074/mcp.M111.016808. Epub 2012 Mar 13.

本文引用的文献

1
Using predicted shape string to enhance the accuracy of γ-turn prediction.
Amino Acids. 2012 May;42(5):1749-55. doi: 10.1007/s00726-011-0889-z. Epub 2011 Mar 22.
2
Predicting three-dimensional structure of protein fragments from dihedral angle propensities and molecular dynamics.
Int J Comput Biol Drug Des. 2010;3(2):146-63. doi: 10.1504/IJCBDD.2010.035240. Epub 2010 Sep 16.
3
Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.
BMC Bioinformatics. 2010 Jul 31;11:407. doi: 10.1186/1471-2105-11-407.
4
Prediction of backbone dihedral angles and protein secondary structure using support vector machines.
BMC Bioinformatics. 2009 Dec 22;10:437. doi: 10.1186/1471-2105-10-437.
5
A novel method for accurate one-dimensional protein structure prediction based on fragment matching.
Bioinformatics. 2010 Feb 15;26(4):470-7. doi: 10.1093/bioinformatics/btp679. Epub 2009 Dec 9.
6
Prediction of beta-turn in protein using E-SSpred and support vector machine.
Protein J. 2009 May;28(3-4):175-81. doi: 10.1007/s10930-009-9181-4.
7
A two-stage neural network based technique for protein secondary structure prediction.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1355-8. doi: 10.1109/IEMBS.2008.4649416.
9
Describing and comparing protein structures using shape strings.
Curr Protein Pept Sci. 2008 Aug;9(4):310-24. doi: 10.2174/138920308785132703.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验