Suppr超能文献

NetTurnP--利用进化信息和预测的蛋白质序列特征进行β-转角的神经网络预测。

NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

机构信息

Department of Systems Biology, Center for Biological Sequence Analysis (CBS), Technical University of Denmark, Lyngby, Denmark.

出版信息

PLoS One. 2010 Nov 30;5(11):e15079. doi: 10.1371/journal.pone.0015079.

Abstract

UNLABELLED

β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively.

CONCLUSION

The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

摘要

未标记

β-转角是最常见的非重复结构类型,平均构成蛋白质中氨基酸的 25%。β-转角的形成在蛋白质折叠、蛋白质稳定性和分子识别过程中起着重要作用。在这项工作中,我们提出了神经网络方法 NetTurnP,用于通过使用进化信息和预测的蛋白质序列特征来预测两类β-转角和预测各个β-转角类型。它已针对常用数据集 BT426 进行了评估,其 Matthews 相关系数为 0.50,这是在两类β-转角和非-β-转角预测中报告的最高性能。此外,NetTurnP 在某些特定的β-转角类型上显示出了改进的性能。在本工作中,已经从原始氨基酸序列训练神经网络方法来预测β-转角或非β-转角以及各个β-转角类型。根据 PROMOTIF 的分类,预测了 I、I'、II、II'、VIII、VIa1、VIa2、VIba 和 IV 等个别β-转角类型,而β-转角或非β-转角的两类别预测是包含所有β-转角类型的超集。使用称为 BT426 的同源序列的黄金集来评估性能。我们的两类别预测方法的性能为:MCC=0.50、Qtotal=82.1%、敏感性=75.6%、PPV=68.8%和 AUC=0.864。我们将我们的性能与其他 11 种获得 0.17-0.47 范围内的 Matthews 相关系数的预测方法进行了比较。对于特定类型的β-转角预测,只有类型 I 和 II 可以用合理的 Matthews 相关系数进行预测,我们分别获得了 0.36 和 0.31 的性能值。

结论

NetTurnP 方法已被实现为一个网络服务器,可在 http://www.cbs.dtu.dk/services/NetTurnP/ 上免费获得。NetTurnP 是唯一可用的允许提交多个序列的网络服务器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5900/2994801/e74b75d3cb24/pone.0015079.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验