Chow Marina S, Eser Bekir E, Wilson Samuel A, Hodgson Keith O, Hedman Britt, Fitzpatrick Paul F, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2009 Jun 10;131(22):7685-98. doi: 10.1021/ja810080c.
Tyrosine hydroxylase (TH) is a pterin-dependent nonheme iron enzyme that catalyzes the hydroxylation of L-tyr to L-DOPA in the rate-limiting step of catecholamine neurotransmitter biosynthesis. We have previously shown that the Fe(II) site in phenylalanine hydroxylase (PAH) converts from six-coordinate (6C) to five-coordinate (5C) only when both substrate + cofactor are bound. However, steady-state kinetics indicate that TH has a different co-substrate binding sequence (pterin + O(2) + L-tyr) than PAH (L-phe + pterin + O(2)). Using X-ray absorption spectroscopy (XAS), and variable-temperature-variable-field magnetic circular dichroism (VTVH MCD) spectroscopy, we have investigated the geometric and electronic structure of the wild-type (WT) TH and two mutants, S395A and E332A, and their interactions with substrates. All three forms of TH undergo 6C --> 5C conversion with tyr + pterin, consistent with the general mechanistic strategy established for O(2)-activating nonheme iron enzymes. We have also applied single-turnover kinetic experiments with spectroscopic data to evaluate the mechanism of the O(2) and pterin reactions in TH. When the Fe(II) site is 6C, the two-electron reduction of O(2) to peroxide by Fe(II) and pterin is favored over individual one-electron reactions, demonstrating that both a 5C Fe(II) and a redox-active pterin are required for coupled O(2) reaction. When the Fe(II) is 5C, the O(2) reaction is accelerated by at least 2 orders of magnitude. Comparison of the kinetics of WT TH, which produces Fe(IV)=O + 4a-OH-pterin, and E332A TH, which does not, shows that the E332 residue plays an important role in directing the protonation of the bridged Fe(II)-OO-pterin intermediate in WT to productively form Fe(IV)=O, which is responsible for hydroxylating L-tyr to L-DOPA.
酪氨酸羟化酶(TH)是一种依赖蝶呤的非血红素铁酶,在儿茶酚胺神经递质生物合成的限速步骤中催化L-酪氨酸羟基化为L-多巴。我们之前已经表明,苯丙氨酸羟化酶(PAH)中的Fe(II)位点仅在底物和辅因子都结合时才从六配位(6C)转变为五配位(5C)。然而,稳态动力学表明,TH具有与PAH(L-苯丙氨酸+蝶呤+O₂)不同的共底物结合顺序(蝶呤+O₂+L-酪氨酸)。利用X射线吸收光谱(XAS)和变温变场磁圆二色性(VTVH MCD)光谱,我们研究了野生型(WT)TH及其两个突变体S395A和E332A的几何和电子结构,以及它们与底物的相互作用。所有三种形式的TH在酪氨酸和蝶呤存在下都会发生6C→5C转变,这与为O₂活化非血红素铁酶建立的一般机制策略一致。我们还将单周转动力学实验与光谱数据相结合,以评估TH中O₂和蝶呤反应的机制。当Fe(II)位点为6C时,Fe(II)和蝶呤将O₂双电子还原为过氧化物比单个单电子反应更受青睐,这表明耦合的O₂反应需要一个5C Fe(II)和一个氧化还原活性蝶呤。当Fe(II)为5C时,O₂反应加速至少2个数量级。产生Fe(IV)=O + 4a-OH-蝶呤的WT TH与不产生的E332A TH的动力学比较表明,E332残基在引导WT中桥连的Fe(II)-OO-蝶呤中间体质子化以有效形成Fe(IV)=O方面起着重要作用,Fe(IV)=O负责将L-酪氨酸羟基化为L-多巴。