Suppr超能文献

Differential effects of alpha-helical and beta-hairpin antimicrobial peptides against Acanthamoeba castellanii.

作者信息

Sacramento R S, Martins R M, Miranda A, Dobroff A S S, Daffre S, Foronda A S, De Freitas D, Schenkman S

机构信息

Departamento de Oftalmologia, Universidade Federal de São Paulo, SP, Brazil.

出版信息

Parasitology. 2009 Jul;136(8):813-21. doi: 10.1017/S0031182009006283. Epub 2009 Jun 2.

Abstract

In this work we evaluated the ability of different types of antimicrobial peptides to promote permeabilization and growth inhibition of Acanthamoeba castellanii trophozoites, which cause eye keratitis. We used cationic alpha-helical peptides P5 and P6, corresponding to the N-terminus of the pore-forming protein from Triatoma infestans, a blood-sucking insect, and a beta-hairpin amphipathic molecule (gomesin), of the spider Acanthoscurria gomesiana haemocytes. A. castellanii permeabilization was obtained after 1 h incubation with micromolar concentrations of both types of peptides. While permeabilization induced by gomesin increased with longer incubations, P5 permeabilization did not increase with time and occurred at doses that are more toxic for SIRC cells. P5, however, at doses below the critical dose used to kill rabbit corneal cells was quite effective in promoting growth inhibition. Similarly, P5 was more effective when serine protease inhibitor was added simultaneously to the permeabilization assay. High performance chromatography followed by mass spectrometry analysis confirmed that, in contrast to gomesin, P5 is hydrolysed by A. castellanii culture supernatants. We conclude that the use of antimicrobial peptides to treat A. castellanii infections requires the search of more specific peptides that are resistant to proteolysis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验