Thomas Carin, Mackey Melissa M, Diaz Amy A, Cox David P
Department of Chemistry, Central Washington University, Ellensburg, Washington 98926, USA.
Redox Rep. 2009;14(3):102-8. doi: 10.1179/135100009X392566.
Mitochondrial dysfunction and reactive oxygen species (ROS) are often implicated in diseases involving oxidative stress and elevated iron. As mitochondria produce ATP by oxidative phosphorylation, ROS by-products are generated from the electron transport chain. Although superoxide and hydrogen peroxide have been thoroughly investigated, little evidence documents hydroxyl radical (HO()) production in mitochondria. In order to determine whether HO() is generated under oxidative stress conditions by a Fenton-type mechanism, bovine heart submitochondrial particles were examined for HO() in the presence and absence of iron ligands, antioxidant enzymes and HO() scavengers. HO() was measured as 2,3- and 2,5-dihydroxybenzoic acid (DHBA), using HPLC with electrochemical detection. The iron ligand desferrioxamine significantly decreased DHBAs, indicating that HO() generation required iron redox-cycling. In addition, results from exogenous SOD and catalase, exogenous hydrogen peroxide, and HO()-scavenger studies support a Fenton-type reaction mechanism. The results indicate that increased HO() levels occur in mitochondria under oxidative stress and that the HO(*) levels can be modulated with antioxidant enzymes and iron ligands. Our findings together with reports on iron accumulation in degenerative diseases highlight the importance of developing mitochondrial-targeted antioxidants for the therapeutic intervention of diseases associated with mitochondrial dysfunction and oxidative stress.
线粒体功能障碍和活性氧(ROS)常与涉及氧化应激和铁含量升高的疾病有关。由于线粒体通过氧化磷酸化产生ATP,电子传递链会产生ROS副产物。尽管超氧化物和过氧化氢已得到充分研究,但几乎没有证据证明线粒体中会产生羟基自由基(HO())。为了确定在氧化应激条件下HO()是否通过芬顿型机制产生,研究人员检测了牛心亚线粒体颗粒在有或没有铁配体、抗氧化酶和HO()清除剂存在的情况下HO()的生成情况。使用高效液相色谱-电化学检测法,将HO()测定为2,3-二羟基苯甲酸(DHBA)和2,5-二羟基苯甲酸(DHBA)。铁配体去铁胺显著降低了DHBA的含量,表明HO()的生成需要铁的氧化还原循环。此外,外源性超氧化物歧化酶(SOD)和过氧化氢酶、外源性过氧化氢以及HO()清除剂的研究结果支持芬顿型反应机制。结果表明,在氧化应激条件下线粒体中HO()水平会升高,并且HO(*)水平可以通过抗氧化酶和铁配体进行调节。我们的研究结果以及关于退行性疾病中铁蓄积的报道凸显了开发线粒体靶向抗氧化剂对治疗与线粒体功能障碍和氧化应激相关疾病的重要性。