Suppr超能文献

自我肯定的阴暗面:面对威胁性信息时的证实性偏差和错觉关联

The dark side of self-affirmation: confirmation bias and illusory correlation in response to threatening information.

作者信息

Munro Geoffrey D, Stansbury Jessica A

机构信息

Towson University, Towson, MD, USA.

出版信息

Pers Soc Psychol Bull. 2009 Sep;35(9):1143-53. doi: 10.1177/0146167209337163. Epub 2009 Jun 2.

Abstract

The effect of self-affirmation on reasoning biases was explored. After participants wrote about a value that was important to them (self-affirmation) or a value that was not important to them (no affirmation), they tested a hypothesis using a task commonly used to study the confirmation bias (Study 1) and assessed correlation from data presented in a 2 x 2 frequency table (Study 2). In both tasks, participants assessed the validity of a hypothesis that had either threatening or nonthreatening implications for their self-concepts. Nonaffirmed participants who tested threatening hypotheses exhibited the confirmation bias less frequently (Study 1) and assessed correlation more accurately (Study 2) than self-affirmed participants or participants who tested nonthreatening hypotheses. Results support models of motivated reasoning that propose that information processing is altered in response to threatening information. By ameliorating the threat, self-affirmations can elicit less effective reasoning strategies.

摘要

研究了自我肯定对推理偏差的影响。参与者写下对自己重要的价值观(自我肯定)或对自己不重要的价值观(无肯定)后,使用一项常用于研究证实性偏差的任务来检验一个假设(研究1),并从一个2×2频率表呈现的数据中评估相关性(研究2)。在这两项任务中,参与者评估一个对其自我概念有威胁性或无威胁性影响的假设的有效性。与自我肯定的参与者或检验无威胁性假设的参与者相比,检验威胁性假设的未得到肯定的参与者表现出证实性偏差的频率更低(研究1),评估相关性更准确(研究2)。结果支持动机性推理模型,该模型提出信息处理会因应威胁性信息而改变。通过减轻威胁,自我肯定会引发效果较差的推理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验