Suppr超能文献

元分析中能否检测到作者偏倚?

Can authorship bias be detected in meta-analysis?

机构信息

George and Fay Yee Centre for Healthcare Innovation, University of Manitoba/Winnipeg Regional Health Authority, Chown Building, 367-753 McDermot Ave, Winnipeg, MB, R3A 1R9, Canada.

Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.

出版信息

Can J Anaesth. 2019 Mar;66(3):287-292. doi: 10.1007/s12630-018-01268-6. Epub 2019 Feb 6.

Abstract

PURPOSE

Statistical approaches have been developed to detect bias in individual trials, but guidance on how to detect systematic differences at a meta-analytical level is lacking. In this paper, we elucidate whether author bias can be detected in a cohort of randomized trials included in a meta-analysis.

METHODS

We utilized mortality data from 35 trials (10,880 patients) included in our previously published meta-analysis. First, we linked each author with their trial (or trials). Then we calculated author-specific odds ratios using univariate cross table methods. Finally, we tested the effect of authorship by comparing each author's estimated odds ratio with all other pooled estimated odds ratios using meta-regression.

RESULTS

The median number of investigators named as authors on the primary trial reports was six (interquartile range: 5-8, range: 2-32). The results showed that the slope of author effect for mortality ranged from - 1.35 to 0.71. We identified only one author team showing a marginally significant effect (- 0.39; 95% confidence interval, - 0.78 to 0.00). This author team has a history of retractions due to data manipulations and ethical violations.

CONCLUSION

When combining trial-level data to produce a pooled effect estimate, investigators must consider sources of potential bias. Our results suggest that systematic errors can be detected using meta-regression, although further research is needed to examine the sensitivity of this model. Systematic reviewers will benefit from the availability of methods to guard against the dissemination of results with the potential to mislead decision-making.

摘要

目的

已经开发了统计方法来检测单个试验中的偏倚,但缺乏在荟萃分析层面检测系统差异的指导。本文阐明了在荟萃分析中纳入的一组随机试验中是否可以检测到作者偏倚。

方法

我们利用先前发表的荟萃分析中包含的 35 项试验(10880 名患者)的死亡率数据。首先,我们将每个作者与他们的试验(或多项试验)相关联。然后,我们使用单变量交叉表方法计算作者特异性比值比。最后,我们通过使用荟萃回归比较每个作者的估计比值比与所有其他汇总估计比值比,来检验作者的影响。

结果

主要试验报告中命名为作者的调查员中位数为 6 人(四分位距:5-8,范围:2-32)。结果表明,死亡率的作者效应斜率范围从-1.35 到 0.71。我们仅发现一个作者团队的效果具有边际显著意义(-0.39;95%置信区间,-0.78 至 0.00)。该作者团队因数据操纵和违反伦理而有撤回记录。

结论

当将试验水平数据合并以产生汇总效应估计时,调查员必须考虑潜在偏倚的来源。我们的结果表明,使用荟萃回归可以检测到系统误差,尽管需要进一步研究来检验该模型的敏感性。系统评价者将受益于可用的方法,以防止传播可能导致决策失误的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验