Suppr超能文献

通过静脉注射生理盐水和治疗性抗体产品的静脉溶液递送的微粒和纳米颗粒。

Microparticles and Nanoparticles Delivered in Intravenous Saline and in an Intravenous Solution of a Therapeutic Antibody Product.

作者信息

Pardeshi Neha N, Qi Wei, Dahl Kevin, Caplan Liron, Carpenter John F

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045.

Malvern Instruments, Columbia, Maryland 21046.

出版信息

J Pharm Sci. 2017 Feb;106(2):511-520. doi: 10.1016/j.xphs.2016.09.028. Epub 2016 Nov 7.

Abstract

Intravenous (IV) infusion is used for administration of a large proportion of biologic therapeutics, including most monoclonal antibody products. In this study, we determined the subvisible particle levels in IV solutions and after the solutions were processed with an IV administration setup that mimicked the typical clinical method of administration. IV saline in bags manufactured by both Hospira and Baxter contained 1600-8000 microparticles/mL and 4-73 × 10 nanoparticles/mL in solution. When IV immunoglobulin was diluted into the IV saline, 3700-23,000 microparticles/mL and 18-240 × 10 nanoparticles/mL were detected. During processing of the solution through the IV system, in-line filters removed most microparticles. However, there were still 1-21 × 10 nanoparticles/mL in IV saline and 7-83 × 10 nanoparticles/mL in IV immunoglobulin diluted in saline. Finally, in samples processed through in-line filters, we found relatively large microparticles (20-60 μm) that were composed of protein or polycarbonate. These particles resulted from shedding of polycarbonate and sloughing off of protein films downstream from the filter membrane. Overall, the results document that even with in-line filters in place, high levels of subvisible particles are delivered to patients and there is a need for improved, more effective filters and IV solutions with lower particle levels.

摘要

静脉输注用于大量生物治疗药物的给药,包括大多数单克隆抗体产品。在本研究中,我们测定了静脉溶液中的亚可见颗粒水平,以及在用模拟典型临床给药方法的静脉给药装置处理溶液后亚可见颗粒的水平。由Hospira和Baxter生产的袋装静脉生理盐水溶液中含有1600 - 8000个/毫升的微粒和4 - 73×10个/毫升的纳米颗粒。当静脉注射免疫球蛋白稀释到静脉生理盐水中时,检测到3700 - 23000个/毫升的微粒和18 - 240×10个/毫升的纳米颗粒。在溶液通过静脉系统的过程中,在线过滤器去除了大部分微粒。然而,静脉生理盐水中仍有1 - 21×10个/毫升的纳米颗粒,在稀释于生理盐水中的静脉注射免疫球蛋白中有7 - 83×10个/毫升的纳米颗粒。最后,在通过在线过滤器处理的样品中,我们发现了由蛋白质或聚碳酸酯组成的相对较大的微粒(20 - 60μm)。这些颗粒是由聚碳酸酯脱落以及滤膜下游蛋白质膜的脱落产生的。总体而言,结果表明,即使有在线过滤器,仍有高水平的亚可见颗粒被输送给患者,因此需要改进的、更有效的过滤器以及颗粒水平更低的静脉溶液。

相似文献

1
Microparticles and Nanoparticles Delivered in Intravenous Saline and in an Intravenous Solution of a Therapeutic Antibody Product.
J Pharm Sci. 2017 Feb;106(2):511-520. doi: 10.1016/j.xphs.2016.09.028. Epub 2016 Nov 7.
4
No Touching! Abrasion of Adsorbed Protein Is the Root Cause of Subvisible Particle Formation During Stirring.
J Pharm Sci. 2016 Feb;105(2):519-529. doi: 10.1016/j.xphs.2015.10.003. Epub 2016 Jan 12.
5
Synergistic Effect of Cavitation and Agitation on Protein Aggregation.
J Pharm Sci. 2017 Feb;106(2):521-529. doi: 10.1016/j.xphs.2016.10.015. Epub 2016 Nov 23.
6
Off-label use of plastic syringes with silicone oil for intravenous infusion bags of antibodies.
Eur J Pharm Biopharm. 2021 Sep;166:205-215. doi: 10.1016/j.ejpb.2021.07.001. Epub 2021 Jul 6.
7
Factors Governing the Accuracy of Subvisible Particle Counting Methods.
J Pharm Sci. 2016 Jul;105(7):2042-52. doi: 10.1016/j.xphs.2016.03.044. Epub 2016 Jun 8.
9
Protein Adsorption to In-Line Filters of Intravenous Administration Sets.
J Pharm Sci. 2017 Oct;106(10):2959-2965. doi: 10.1016/j.xphs.2017.05.028. Epub 2017 May 27.
10
Defining the right diluent for intravenous infusion of therapeutic antibodies.
MAbs. 2020 Jan-Dec;12(1):1685814. doi: 10.1080/19420862.2019.1685814.

引用本文的文献

2
Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review.
Micromachines (Basel). 2022 Sep 28;13(10):1623. doi: 10.3390/mi13101623.
3
Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates.
Pharm Res. 2022 Jan;39(1):89-103. doi: 10.1007/s11095-021-03158-x. Epub 2021 Dec 27.
4
Enhanced Skin Delivery of Therapeutic Peptides Using Spicule-Based Topical Delivery Systems.
Pharmaceutics. 2021 Dec 8;13(12):2119. doi: 10.3390/pharmaceutics13122119.
5
Strategies to prevent drug incompatibility during simultaneous multi-drug infusion in intensive care units: a literature review.
Eur J Clin Pharmacol. 2021 Sep;77(9):1309-1321. doi: 10.1007/s00228-021-03112-1. Epub 2021 Mar 25.
6
Immunogenicity of Bioproducts: Cellular Models to Evaluate the Impact of Therapeutic Antibody Aggregates.
Front Immunol. 2020 May 5;11:725. doi: 10.3389/fimmu.2020.00725. eCollection 2020.
7
DEHP Nanodroplets Leached From Polyvinyl Chloride IV Bags Promote Aggregation of IVIG and Activate Complement in Human Serum.
J Pharm Sci. 2020 Jan;109(1):429-442. doi: 10.1016/j.xphs.2019.06.015. Epub 2019 Jun 21.
8
Evaluation of Assays to Assess the Modulation of Dendritic Cells Functions by Therapeutic Antibodies and Aggregates.
Front Immunol. 2019 Mar 28;10:601. doi: 10.3389/fimmu.2019.00601. eCollection 2019.

本文引用的文献

1
Particle contamination of parenteralia and in-line filtration of proteinaceous drugs.
Int J Pharm. 2015 Dec 30;496(2):250-67. doi: 10.1016/j.ijpharm.2015.10.082. Epub 2015 Nov 7.
5
Immediate infusion-related adverse reactions to intravenous immunoglobulin in a prospective cohort of 1765 infusions.
Int Immunopharmacol. 2014 Dec;23(2):442-6. doi: 10.1016/j.intimp.2014.09.015. Epub 2014 Sep 22.
6
Recombinant murine growth hormone particles are more immunogenic with intravenous than subcutaneous administration.
J Pharm Sci. 2014 Jan;103(1):128-39. doi: 10.1002/jps.23794. Epub 2013 Nov 25.
7
Adverse effects of IgG therapy.
J Allergy Clin Immunol Pract. 2013 Nov-Dec;1(6):558-66. doi: 10.1016/j.jaip.2013.09.012. Epub 2013 Oct 31.
10
Compatibility and stability of pertuzumab and trastuzumab admixtures in i.v. infusion bags for coadministration.
J Pharm Sci. 2013 Mar;102(3):794-812. doi: 10.1002/jps.23403. Epub 2012 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验