Duan Kangmin, Sibley Christopher D, Davidson Carla J, Surette Michael G
Contrib Microbiol. 2009;16:1-17. doi: 10.1159/000219369. Epub 2009 Jun 2.
Bacteria live almost exclusively in communities with other microorganisms, and often in association with multicellular hosts. These communities are capable of maintaining complex structural and functional stability over time, and exhibit fascinating properties of resiliency in response to environmental changes. This is a result of interactions between microbes and the environment and amongst members of the community. A multitude of chemical interactions occur in microbial communities where primary and secondary metabolites contribute to a wealth of interactions between organisms. The chemicals include a variety of nutrients, toxic or neutral metabolic byproducts, antibiotics, and cell-cell signaling molecules. These chemical and physical signals facilitate microbial relationship that can be competitive, cooperative or neutral, and thus are responsible for determining community structure. In turn, the surrounding community changes the microenvironment of individual cells who respond to chemical and environmental cues in a combinatorial manner. Current laboratory understanding of the genetics and mechanisms of interactions between microbes has the power to help us understand how complex microbial communities behave in the natural environment. In this chapter we review the current understanding of microbial communication, from the genetic and molecular aspects, to our current understanding of their ecological role.
细菌几乎完全生活在与其他微生物组成的群落中,并且常常与多细胞宿主共生。这些群落能够随着时间推移维持复杂的结构和功能稳定性,并在应对环境变化时展现出令人着迷的弹性特性。这是微生物与环境之间以及群落成员之间相互作用的结果。在微生物群落中会发生大量的化学相互作用,其中初级和次级代谢产物促成了生物体之间丰富多样的相互作用。这些化学物质包括各种营养物质、有毒或中性的代谢副产物、抗生素以及细胞间信号分子。这些化学和物理信号促进了微生物之间的关系,这种关系可能是竞争性的、合作性的或中性的,因此决定了群落结构。反过来,周围的群落会改变单个细胞的微环境,这些细胞会以组合的方式对化学和环境线索做出反应。目前实验室对微生物之间相互作用的遗传学和机制的理解,有助于我们了解复杂的微生物群落在自然环境中的行为方式。在本章中,我们从遗传和分子层面回顾了对微生物通讯的当前理解,以及我们目前对其生态作用的认识。