Suppr超能文献

[电除颤的机制]

[Mechanisms of electrical defibrillation].

作者信息

Reek S, Ideker R E

机构信息

Otto-von-Guericke-Universität Magdeburg Klinik für Kardiologie, Angiologie, Pneumologie im Zentrum Innere Medizin, 39120 Magdeburg.

出版信息

Herzschrittmacherther Elektrophysiol. 1997 Mar;8(1):4-14. doi: 10.1007/BF03042473.

Abstract

Ventricular fibrillation has been described as a "chaotic, random, asynchronous electrical activity of the ventricles due to repetitive reentrant excitation and/or rapid focal discharge". Reentrant and non-reentrant mechanisms are responsible for the initiation of ventricular fibrillation. After fibrillation has been induced, it is thought that multiple, disorganized, wandering wavelets follow constantly changing reentrant pathways. Electrical defibrillation is the only valid therapeutic approach for ventricular fibrillation. A successful defibrillation shock must be of sufficient strength to stop fibrillation but must not be so strong that damage to the myocardium occurs. The clinical use of the implantable cardioverter/defibrillator device has significantly stimulated research in the field of cardiac defibrillation. In order to develop more efficient shock waveforms and electrode configurations for smaller, and also longer lasting devices, we need a better understanding of the basic mechanisms of defibrillation. The development of computerized electrical mapping systems, capable of recording before, during and after a defibrillation shock, optical recording systems and microelectrodes, for action potential recording before and after the shock application and mathematical models have contributed much to the understanding of defibrillation mechanisms.An electrical shock hits the cardiac cells in different phases of their action potential. This results in 1) direct activation, 2) a "graded response", or 3) no effect. "Graded response" produces prolongation of the action potential and prolongs refractoriness without giving rise to a propagated activation front. Refractory period prolongation in an area that is still refractory at the time of the shock is critical for successful defibrillation. Mapping studies have shown that for successful defibrillation with monophasic shocks a minimal potential gradient of 5-7 V/cm is necessary (the exact value depends on the waveform and the orientation of the cells with respect to the electric field).Several hypotheses have been developed in order to explain the mechanisms that underlie successful defibrillation shocks. This paper will discuss the various theories. The "upper limit of vulnerability" hypothesis for defibrillation states that a successful defibrillation shock must stop existing activation fronts by directly exciting or by prolonging refractoriness just in front of the upcoming activation fronts and must not give rise to new activation fronts at the border of the directly excited area. Shocks slightly weaker then necessary to defibrillate stop fibrillation activation fronts, but give rise to new activation fronts that reinitiate fibrillation. These new activation fronts arise at a "critical point," where a critical shock potential gradient interferes with a critical degree of tissue refractoriness. Mappping studies support the "upper limit of vulnerability" hypothesis of defibrillation but not all defibrillation failures, however, can be explained by this hypothesis.Clinical data and experimental results have shown that biphasic shocks may have lower defibrillation thresholds than monophasic shocks. The advantage of defibrillation with a biphasic waveform is not yet clearly understood. We discuss some possible reasons why some biphasic waveforms have lower defibrillation thresholds than monophasic waveforms.

摘要

心室颤动被描述为“由于反复折返激动和/或快速局灶性放电导致的心室混乱、随机、异步电活动”。折返和非折返机制是心室颤动起始的原因。在诱发颤动后,人们认为多个杂乱无章、游走的小波沿着不断变化的折返路径传播。电除颤是治疗心室颤动的唯一有效方法。成功的除颤电击必须具有足够的强度来终止颤动,但又不能过强以至于对心肌造成损伤。植入式心脏复律除颤器装置的临床应用显著推动了心脏除颤领域的研究。为了开发更高效的电击波形和电极配置,用于更小且更持久的装置,我们需要更好地理解除颤的基本机制。计算机化电标测系统的发展,能够记录除颤电击前、期间和之后的情况,光学记录系统和微电极,用于记录电击应用前后的动作电位,以及数学模型,都为理解除颤机制做出了很大贡献。

电击在心肌细胞动作电位的不同阶段作用于它们。这会导致:1)直接激活;2)“分级反应”;或3)无效应。“分级反应”会使动作电位延长并延长不应期,但不会产生传播的激活前沿。在电击时仍处于不应期的区域的不应期延长对于成功除颤至关重要。标测研究表明,对于单相电击成功除颤,最小电位梯度为5 - 7 V/cm是必要的(确切值取决于波形以及细胞相对于电场的方向)。

为了解释成功除颤电击背后的机制,已经提出了几种假设。本文将讨论各种理论。除颤的“易损性上限”假设指出,成功的除颤电击必须通过直接兴奋或延长即将到来的激活前沿前方的不应期来停止现有的激活前沿,并且不得在直接兴奋区域的边界产生新的激活前沿。比除颤所需强度稍弱的电击会停止颤动激活前沿,但会产生新的激活前沿,从而重新引发颤动。这些新的激活前沿出现在一个“临界点”,在该点,临界电击电位梯度与临界程度的组织不应期相互作用。标测研究支持除颤的“易损性上限”假设,但并非所有除颤失败都可以用该假设来解释。

临床数据和实验结果表明,双相电击的除颤阈值可能低于单相电击。双相波形除颤的优势尚未完全明确。我们讨论了一些双相波形的除颤阈值低于单相波形的可能原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验