Group of Cognitive Systems Modeling, Biophysical Section, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400 Uruguay.
Cogn Neurodyn. 2009 Dec;3(4):401-14. doi: 10.1007/s11571-009-9084-2. Epub 2009 Jun 3.
Cognitive functions rely on the extensive use of information stored in the brain, and the searching for the relevant information for solving some problem is a very complex task. Human cognition largely uses biological search engines, and we assume that to study cognitive function we need to understand the way these brain search engines work. The approach we favor is to study multi-modular network models, able to solve particular problems that involve searching for information. The building blocks of these multimodular networks are the context dependent memory models we have been using for almost 20 years. These models work by associating an output to the Kronecker product of an input and a context. Input, context and output are vectors that represent cognitive variables. Our models constitute a natural extension of the traditional linear associator. We show that coding the information in vectors that are processed through association matrices, allows for a direct contact between these memory models and some procedures that are now classical in the Information Retrieval field. One essential feature of context-dependent models is that they are based on the thematic packing of information, whereby each context points to a particular set of related concepts. The thematic packing can be extended to multimodular networks involving input-output contexts, in order to accomplish more complex tasks. Contexts act as passwords that elicit the appropriate memory to deal with a query. We also show toy versions of several 'neuromimetic' devices that solve cognitive tasks as diverse as decision making or word sense disambiguation. The functioning of these multimodular networks can be described as dynamical systems at the level of cognitive variables.
认知功能依赖于大脑中广泛使用的信息,而寻找解决问题的相关信息是一项非常复杂的任务。人类认知在很大程度上使用生物搜索引擎,我们假设要研究认知功能,就需要了解这些大脑搜索引擎的工作方式。我们倾向于采用的方法是研究能够解决涉及信息搜索的特定问题的多模块化网络模型。这些多模块化网络的构建块是我们近 20 年来一直在使用的依赖于上下文的记忆模型。这些模型通过将输出与输入和上下文的 Kronecker 积相关联来工作。输入、上下文和输出都是表示认知变量的向量。我们的模型是传统线性关联器的自然扩展。我们表明,通过关联矩阵处理信息编码在向量中,可以在这些记忆模型和信息检索领域中现在已经很经典的一些过程之间建立直接联系。依赖于上下文的模型的一个基本特征是,它们基于信息的主题包装,其中每个上下文都指向一组特定的相关概念。主题包装可以扩展到涉及输入-输出上下文的多模块化网络,以完成更复杂的任务。上下文充当密码,引出适当的记忆来处理查询。我们还展示了几种“神经拟态”设备的玩具版本,这些设备解决了从决策到词义消歧等各种认知任务。这些多模块化网络的功能可以描述为认知变量层面的动力系统。