Suppr超能文献

大脑中的动态搜索。

Dynamic searching in the brain.

机构信息

Group of Cognitive Systems Modeling, Biophysical Section, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400 Uruguay.

出版信息

Cogn Neurodyn. 2009 Dec;3(4):401-14. doi: 10.1007/s11571-009-9084-2. Epub 2009 Jun 3.

Abstract

Cognitive functions rely on the extensive use of information stored in the brain, and the searching for the relevant information for solving some problem is a very complex task. Human cognition largely uses biological search engines, and we assume that to study cognitive function we need to understand the way these brain search engines work. The approach we favor is to study multi-modular network models, able to solve particular problems that involve searching for information. The building blocks of these multimodular networks are the context dependent memory models we have been using for almost 20 years. These models work by associating an output to the Kronecker product of an input and a context. Input, context and output are vectors that represent cognitive variables. Our models constitute a natural extension of the traditional linear associator. We show that coding the information in vectors that are processed through association matrices, allows for a direct contact between these memory models and some procedures that are now classical in the Information Retrieval field. One essential feature of context-dependent models is that they are based on the thematic packing of information, whereby each context points to a particular set of related concepts. The thematic packing can be extended to multimodular networks involving input-output contexts, in order to accomplish more complex tasks. Contexts act as passwords that elicit the appropriate memory to deal with a query. We also show toy versions of several 'neuromimetic' devices that solve cognitive tasks as diverse as decision making or word sense disambiguation. The functioning of these multimodular networks can be described as dynamical systems at the level of cognitive variables.

摘要

认知功能依赖于大脑中广泛使用的信息,而寻找解决问题的相关信息是一项非常复杂的任务。人类认知在很大程度上使用生物搜索引擎,我们假设要研究认知功能,就需要了解这些大脑搜索引擎的工作方式。我们倾向于采用的方法是研究能够解决涉及信息搜索的特定问题的多模块化网络模型。这些多模块化网络的构建块是我们近 20 年来一直在使用的依赖于上下文的记忆模型。这些模型通过将输出与输入和上下文的 Kronecker 积相关联来工作。输入、上下文和输出都是表示认知变量的向量。我们的模型是传统线性关联器的自然扩展。我们表明,通过关联矩阵处理信息编码在向量中,可以在这些记忆模型和信息检索领域中现在已经很经典的一些过程之间建立直接联系。依赖于上下文的模型的一个基本特征是,它们基于信息的主题包装,其中每个上下文都指向一组特定的相关概念。主题包装可以扩展到涉及输入-输出上下文的多模块化网络,以完成更复杂的任务。上下文充当密码,引出适当的记忆来处理查询。我们还展示了几种“神经拟态”设备的玩具版本,这些设备解决了从决策到词义消歧等各种认知任务。这些多模块化网络的功能可以描述为认知变量层面的动力系统。

相似文献

1
Dynamic searching in the brain.
Cogn Neurodyn. 2009 Dec;3(4):401-14. doi: 10.1007/s11571-009-9084-2. Epub 2009 Jun 3.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
A neurocomputational model for the processing of conflicting information in context-dependent decision tasks.
J Biol Phys. 2022 Jun;48(2):195-213. doi: 10.1007/s10867-021-09601-9. Epub 2022 Mar 8.
6
7
Multiplicative contexts in associative memories.
Biosystems. 1994;32(3):145-61. doi: 10.1016/0303-2647(94)90038-8.
8
Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory.
Cogn Affect Behav Neurosci. 2020 Feb;20(1):76-90. doi: 10.3758/s13415-019-00753-9.

引用本文的文献

1
Inhibitory dynamics in dual-route evidence accumulation account for response time distributions from conflict tasks.
Cogn Neurodyn. 2024 Aug;18(4):1507-1524. doi: 10.1007/s11571-023-09990-8. Epub 2023 Jul 11.
2
Multiplicative processing in the modeling of cognitive activities in large neural networks.
Biophys Rev. 2023 Jun 22;15(4):767-785. doi: 10.1007/s12551-023-01074-5. eCollection 2023 Aug.
3
A neurocomputational model for the processing of conflicting information in context-dependent decision tasks.
J Biol Phys. 2022 Jun;48(2):195-213. doi: 10.1007/s10867-021-09601-9. Epub 2022 Mar 8.
4
The biological Maxwell's demons: exploring ideas about the information processing in biological systems.
Theory Biosci. 2021 Oct;140(3):307-318. doi: 10.1007/s12064-021-00354-6. Epub 2021 Aug 27.
5
Semantic integration by pattern priming: experiment and cortical network model.
Cogn Neurodyn. 2016 Dec;10(6):513-533. doi: 10.1007/s11571-016-9410-4. Epub 2016 Sep 17.
6
A simplified computational memory model from information processing.
Sci Rep. 2016 Nov 23;6:37470. doi: 10.1038/srep37470.
7
On the time course of short-term forgetting: a human experimental model for the sense of balance.
Cogn Neurodyn. 2016 Feb;10(1):7-22. doi: 10.1007/s11571-015-9362-0. Epub 2015 Nov 7.
8
Modeling spatial-temporal operations with context-dependent associative memories.
Cogn Neurodyn. 2015 Oct;9(5):523-34. doi: 10.1007/s11571-015-9343-3. Epub 2015 May 17.
9
A hybrid model for the neural representation of complex mental processing in the human brain.
Cogn Neurodyn. 2013 Apr;7(2):89-103. doi: 10.1007/s11571-012-9220-2. Epub 2012 Sep 28.
10
Memory reconsolidation for natural language processing.
Cogn Neurodyn. 2009 Dec;3(4):365-72. doi: 10.1007/s11571-009-9097-x. Epub 2009 Oct 28.

本文引用的文献

2
Towards dynamical system models of language-related brain potentials.
Cogn Neurodyn. 2008 Sep;2(3):229-55. doi: 10.1007/s11571-008-9041-5. Epub 2008 Apr 29.
3
Language processing with dynamic fields.
Cogn Neurodyn. 2008 Jun;2(2):79-88. doi: 10.1007/s11571-008-9042-4. Epub 2008 May 31.
4
A cognitive architecture that solves a problem stated by Minsky.
IEEE Trans Syst Man Cybern B Cybern. 2001;31(5):729-34. doi: 10.1109/3477.956034.
5
Context-sensitive autoassociative memories as expert systems in medical diagnosis.
BMC Med Inform Decis Mak. 2006 Nov 22;6:39. doi: 10.1186/1472-6947-6-39.
7
Semantic graphs and associative memories.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066136. doi: 10.1103/PhysRevE.70.066136. Epub 2004 Dec 23.
8
Simulated electrocortical activity at microscopic, mesoscopic, and global scales.
Neuropsychopharmacology. 2003 Jul;28 Suppl 1:S80-93. doi: 10.1038/sj.npp.1300138.
9
Functional brain imaging and human brain function.
J Neurosci. 2003 May 15;23(10):3959-62. doi: 10.1523/JNEUROSCI.23-10-03959.2003.
10
Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems.
Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48. doi: 10.1017/s0140525x01000097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验