Interdisciplinary Center in Cognition for Education and Learning, Universidad de la República, José Enrique Rodó 1839 bis, 11200, Montevideo, Uruguay.
Group of Cognitive Systems Modeling, Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
J Biol Phys. 2022 Jun;48(2):195-213. doi: 10.1007/s10867-021-09601-9. Epub 2022 Mar 8.
Context-dependent computation is a relevant characteristic of neural systems, endowing them with the capacity of adaptively modifying behavioral responses and flexibly discriminating between relevant and irrelevant information in a stimulus. This ability is particularly highlighted in solving conflicting tasks. A long-standing problem in computational neuroscience, flexible routing of information, is also closely linked with the ability to perform context-dependent associations. Here we present an extension of a context-dependent associative memory model to achieve context-dependent decision-making in the presence of conflicting and noisy multi-attribute stimuli. In these models, the input vectors are multiplied by context vectors via the Kronecker tensor product. To outfit the model with a noisy dynamic, we embedded the context-dependent associative memory in a leaky competing accumulator model, and, finally, we proved the power of the model in the reproduction of a behavioral experiment with monkeys in a context-dependent conflicting decision-making task. At the end, we discuss the neural feasibility of the tensor product and made the suggestive observation that the capacities of tensor context models are surprisingly in alignment with the more recent experimental findings about functional flexibility at different levels of brain organization.
上下文相关计算是神经系统的一个重要特征,使它们具有自适应地修改行为反应的能力,并在刺激中灵活地区分相关和不相关的信息。这种能力在解决冲突任务时尤为突出。计算神经科学中的一个长期问题,即信息的灵活路由,也与执行上下文相关联想的能力密切相关。在这里,我们提出了一种上下文相关联想记忆模型的扩展,以在存在冲突和嘈杂的多属性刺激的情况下实现上下文相关的决策。在这些模型中,输入向量通过克罗内克张量积与上下文向量相乘。为了给模型配备嘈杂的动态,我们将上下文相关的联想记忆嵌入到一个漏竞争累加器模型中,最后,我们证明了该模型在猴子在上下文相关的冲突决策任务中的行为实验再现中的强大功能。最后,我们讨论了张量乘积的神经可行性,并做出了有启发性的观察,即张量上下文模型的容量与最近关于大脑不同组织层次的功能灵活性的实验发现惊人地一致。