Suppr超能文献

用于处理上下文相关决策任务中冲突信息的神经计算模型。

A neurocomputational model for the processing of conflicting information in context-dependent decision tasks.

机构信息

Interdisciplinary Center in Cognition for Education and Learning, Universidad de la República, José Enrique Rodó 1839 bis, 11200, Montevideo, Uruguay.

Group of Cognitive Systems Modeling, Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.

出版信息

J Biol Phys. 2022 Jun;48(2):195-213. doi: 10.1007/s10867-021-09601-9. Epub 2022 Mar 8.

Abstract

Context-dependent computation is a relevant characteristic of neural systems, endowing them with the capacity of adaptively modifying behavioral responses and flexibly discriminating between relevant and irrelevant information in a stimulus. This ability is particularly highlighted in solving conflicting tasks. A long-standing problem in computational neuroscience, flexible routing of information, is also closely linked with the ability to perform context-dependent associations. Here we present an extension of a context-dependent associative memory model to achieve context-dependent decision-making in the presence of conflicting and noisy multi-attribute stimuli. In these models, the input vectors are multiplied by context vectors via the Kronecker tensor product. To outfit the model with a noisy dynamic, we embedded the context-dependent associative memory in a leaky competing accumulator model, and, finally, we proved the power of the model in the reproduction of a behavioral experiment with monkeys in a context-dependent conflicting decision-making task. At the end, we discuss the neural feasibility of the tensor product and made the suggestive observation that the capacities of tensor context models are surprisingly in alignment with the more recent experimental findings about functional flexibility at different levels of brain organization.

摘要

上下文相关计算是神经系统的一个重要特征,使它们具有自适应地修改行为反应的能力,并在刺激中灵活地区分相关和不相关的信息。这种能力在解决冲突任务时尤为突出。计算神经科学中的一个长期问题,即信息的灵活路由,也与执行上下文相关联想的能力密切相关。在这里,我们提出了一种上下文相关联想记忆模型的扩展,以在存在冲突和嘈杂的多属性刺激的情况下实现上下文相关的决策。在这些模型中,输入向量通过克罗内克张量积与上下文向量相乘。为了给模型配备嘈杂的动态,我们将上下文相关的联想记忆嵌入到一个漏竞争累加器模型中,最后,我们证明了该模型在猴子在上下文相关的冲突决策任务中的行为实验再现中的强大功能。最后,我们讨论了张量乘积的神经可行性,并做出了有启发性的观察,即张量上下文模型的容量与最近关于大脑不同组织层次的功能灵活性的实验发现惊人地一致。

相似文献

3
Tensor Representation of Topographically Organized Semantic Spaces.拓扑组织的语义空间的张量表示。
Neural Comput. 2018 Dec;30(12):3259-3280. doi: 10.1162/neco_a_01132. Epub 2018 Sep 14.
4
Dynamic searching in the brain.大脑中的动态搜索。
Cogn Neurodyn. 2009 Dec;3(4):401-14. doi: 10.1007/s11571-009-9084-2. Epub 2009 Jun 3.

本文引用的文献

1
Functional flexibility in cortical circuits.皮质回路的功能灵活性。
Curr Opin Neurobiol. 2019 Oct;58:175-180. doi: 10.1016/j.conb.2019.09.008. Epub 2019 Oct 1.
2
Locomotion-dependent remapping of distributed cortical networks.运动依赖性皮质网络分布式重映射。
Nat Neurosci. 2019 May;22(5):778-786. doi: 10.1038/s41593-019-0357-8. Epub 2019 Mar 11.
3
Single-neuron perturbations reveal feature-specific competition in V1.单细胞刺激揭示了 V1 中特征特异性竞争。
Nature. 2019 Mar;567(7748):334-340. doi: 10.1038/s41586-019-0997-6. Epub 2019 Mar 6.
4
Tensor Representation of Topographically Organized Semantic Spaces.拓扑组织的语义空间的张量表示。
Neural Comput. 2018 Dec;30(12):3259-3280. doi: 10.1162/neco_a_01132. Epub 2018 Sep 14.
10
A modular approach to language production: models and facts.语言生成的模块化方法:模型与事实。
Cortex. 2014 Jun;55:61-76. doi: 10.1016/j.cortex.2013.02.005. Epub 2013 Feb 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验