Ward D K, Farkas D, Lian J, Curtin W A, Wang J, Kim K-S, Qi Y
Division of Engineering, Brown University, Providence, RI 02912, USA.
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9580-5. doi: 10.1073/pnas.0900804106. Epub 2009 Jun 3.
Size-dependent plastic flow behavior is manifested in nanoindentation, microbending, and pillar-compression experiments and plays a key role in the contact mechanics and friction of rough surfaces. Recent experiments using a hard flat plate to compress single-crystal Au nano-pyramids and others using a Berkovich indenter to indent flat thin films show size scaling into the 100-nm range where existing mechanistic models are not expected to apply. To bridge the gap between single-dislocation nucleation at the 1-nm scale and dislocation-ensemble plasticity at the 1-microm scale, we use large-scale molecular dynamics (MD) simulations to predict the magnitude and scaling of hardness H versus contact size l(c) in nano-pyramids. Two major results emerge: a regime of near-power-law size scaling H approximately l(c)(-eta) exists, with eta(MD) approximately 0.32 compared with eta(expt) approximately 0.75, and unprecedented quantitative and qualitative agreement between MD and experiments is achieved, with H(MD) approximately 4 GPa at l(c) = 36 nm and H(expt) approximately 2.5 GPa at l(c) = 100 nm. An analytic model, incorporating the energy costs of forming the geometrically necessary dislocation structures that accommodate the deformation, is developed and captures the unique magnitude and size scaling of the hardness at larger MD sizes and up to experimental scales while rationalizing the transition in scaling between MD and experimental scales. The model suggests that dislocation-dislocation interactions dominate at larger scales, whereas the behavior at the smallest MD scales is controlled by nucleation over energy barriers. These results provide a basic framework for understanding and predicting size-dependent plasticity in nanoscale asperities under contact conditions in realistic engineered surfaces.
尺寸依赖的塑性流动行为在纳米压痕、微弯曲和柱体压缩实验中得以体现,并在粗糙表面的接触力学和摩擦中发挥关键作用。近期,使用硬平板压缩单晶金纳米金字塔的实验以及使用贝氏压头压入平整薄膜的其他实验表明,尺寸缩放进入了100纳米范围,而现有的力学模型预计在此范围内并不适用。为了弥合1纳米尺度下单位错形核与1微米尺度下的位错系综塑性之间的差距,我们使用大规模分子动力学(MD)模拟来预测纳米金字塔中硬度H与接触尺寸l(c)的大小及缩放关系。出现了两个主要结果:存在一种近似幂律尺寸缩放的 regime,即H约为l(c)(-eta),其中eta(MD)约为0.32,而eta(expt)约为0.75,并且MD与实验之间实现了前所未有的定量和定性一致性,在l(c)=36纳米时H(MD)约为4吉帕,在l(c)=100纳米时H(expt)约为2.5吉帕。我们开发了一个分析模型,该模型纳入了形成适应变形的几何必要位错结构的能量成本,并捕捉了较大MD尺寸及直至实验尺度下硬度的独特大小和尺寸缩放,同时合理化了MD与实验尺度之间缩放的转变。该模型表明,位错 - 位错相互作用在较大尺度上占主导,而最小MD尺度下的行为则由越过能垒的形核控制。这些结果为理解和预测实际工程表面接触条件下纳米尺度微凸体中尺寸依赖的塑性提供了一个基本框架。