Suppr超能文献

在虚拟配体筛选中鉴定出的Max同二聚体稳定剂可抑制Myc功能。

Stabilizers of the Max homodimer identified in virtual ligand screening inhibit Myc function.

作者信息

Jiang Hao, Bower Kristen E, Beuscher Albert E, Zhou Bin, Bobkov Andrey A, Olson Arthur J, Vogt Peter K

机构信息

Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Mol Pharmacol. 2009 Sep;76(3):491-502. doi: 10.1124/mol.109.054858. Epub 2009 Jun 4.

Abstract

Many human cancers show constitutive or amplified expression of the transcriptional regulator and oncoprotein Myc, making Myc a potential target for therapeutic intervention. Here we report the down-regulation of Myc activity by reducing the availability of Max, the essential dimerization partner of Myc. Max is expressed constitutively and can form unstable homodimers. We have isolated stabilizers of the Max homodimer by applying virtual ligand screening (VLS) to identify specific binding pockets for small molecule interactors. Candidate compounds found by VLS were screened by fluorescence resonance energy transfer, and from these screens emerged a potent, specific stabilizer of the Max homodimer. In vitro binding assays demonstrated that the stabilizer enhances the formation of the Max-Max homodimer and interferes with the heterodimerization of Myc and Max in a dose-dependent manner. Furthermore, this compound interferes with Myc-induced oncogenic transformation, Myc-dependent cell growth, and Myc-mediated transcriptional activation. The Max-Max stabilizer can be considered a lead compound for the development of inhibitors of the Myc network.

摘要

许多人类癌症表现出转录调节因子和癌蛋白Myc的组成型或扩增表达,这使得Myc成为治疗干预的潜在靶点。在此,我们报告通过减少Max(Myc的必需二聚化伙伴)的可利用性来下调Myc活性。Max组成型表达,可形成不稳定的同源二聚体。我们通过应用虚拟配体筛选(VLS)来识别小分子相互作用剂的特定结合口袋,从而分离出Max同源二聚体的稳定剂。通过VLS发现的候选化合物通过荧光共振能量转移进行筛选,从这些筛选中出现了一种有效的、特异性的Max同源二聚体稳定剂。体外结合试验表明,该稳定剂增强Max-Max同源二聚体的形成,并以剂量依赖性方式干扰Myc和Max的异源二聚化。此外,该化合物干扰Myc诱导的致癌转化、Myc依赖性细胞生长以及Myc介导的转录激活。Max-Max稳定剂可被视为开发Myc网络抑制剂的先导化合物。

相似文献

1
Stabilizers of the Max homodimer identified in virtual ligand screening inhibit Myc function.
Mol Pharmacol. 2009 Sep;76(3):491-502. doi: 10.1124/mol.109.054858. Epub 2009 Jun 4.
2
Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics.
J Med Chem. 2015 Apr 9;58(7):3002-24. doi: 10.1021/jm501440q. Epub 2015 Mar 30.
3
Small-molecule modulators of c-Myc/Max and Max/Max interactions.
Curr Top Microbiol Immunol. 2011;348:139-49. doi: 10.1007/82_2010_90.
4
Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3830-5. doi: 10.1073/pnas.062036999. Epub 2002 Mar 12.
5
A novel inhibitor L755507 efficiently blocks c-Myc-MAX heterodimerization and induces apoptosis in cancer cells.
J Biol Chem. 2021 Jul;297(1):100903. doi: 10.1016/j.jbc.2021.100903. Epub 2021 Jun 23.
8
Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription.
Cell Chem Biol. 2019 May 16;26(5):711-723.e14. doi: 10.1016/j.chembiol.2019.02.009. Epub 2019 Mar 14.
9
In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential.
Oncotarget. 2014 Oct 15;5(19):8869-78. doi: 10.18632/oncotarget.2588.

引用本文的文献

1
Targeting protein synthesis pathways in MYC-amplified medulloblastoma.
Discov Oncol. 2025 Jan 8;16(1):23. doi: 10.1007/s12672-025-01761-7.
2
Study of the Anti-MYC Potential of Lanostane-Type Triterpenes.
ACS Omega. 2024 Dec 12;9(51):50844-50858. doi: 10.1021/acsomega.4c10201. eCollection 2024 Dec 24.
3
Antitumor Effect of Anti-c-Myc Aptamer-Based PROTAC for Degradation of the c-Myc Protein.
Adv Sci (Weinh). 2024 Jul;11(26):e2309639. doi: 10.1002/advs.202309639. Epub 2024 Apr 29.
4
Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials.
Signal Transduct Target Ther. 2023 Sep 6;8(1):335. doi: 10.1038/s41392-023-01589-z.
5
MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products.
Aging Dis. 2024 Apr 1;15(2):640-697. doi: 10.14336/AD.2023.0520.
7
Normal and Neoplastic Growth Suppression by the Extended Myc Network.
Cells. 2022 Feb 21;11(4):747. doi: 10.3390/cells11040747.
8
The long journey to bring a Myc inhibitor to the clinic.
J Cell Biol. 2021 Aug 2;220(8). doi: 10.1083/jcb.202103090. Epub 2021 Jun 23.
9
Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras.
Cell Chem Biol. 2021 May 20;28(5):648-661.e5. doi: 10.1016/j.chembiol.2021.03.011. Epub 2021 Apr 8.
10
Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc.
Mol Cancer. 2021 Jan 4;20(1):3. doi: 10.1186/s12943-020-01291-6.

本文引用的文献

1
Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules.
Chem Biol. 2008 Nov 24;15(11):1149-55. doi: 10.1016/j.chembiol.2008.09.011.
2
Myc target transcriptomes.
Curr Top Microbiol Immunol. 2006;302:145-67. doi: 10.1007/3-540-32952-8_6.
3
Genetic regulators of large-scale transcriptional signatures in cancer.
Nat Genet. 2006 Apr;38(4):421-30. doi: 10.1038/ng1752. Epub 2006 Mar 5.
4
Discovery of protein phosphatase 2C inhibitors by virtual screening.
J Med Chem. 2006 Mar 9;49(5):1658-67. doi: 10.1021/jm051033y.
5
Activated Src abrogates the Myc requirement for the G0/G1 transition but not for the G1/S transition.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2695-700. doi: 10.1073/pnas.0511186103. Epub 2006 Feb 13.
6
A credit-card library approach for disrupting protein-protein interactions.
Bioorg Med Chem. 2006 Apr 15;14(8):2660-73. doi: 10.1016/j.bmc.2005.11.052. Epub 2005 Dec 27.
9
Low molecular weight inhibitors of Myc-Max interaction and function.
Oncogene. 2003 Sep 18;22(40):6151-9. doi: 10.1038/sj.onc.1206641.
10
Modulation of protein-protein interactions with small organic molecules.
Angew Chem Int Ed Engl. 2003 Jun 6;42(22):2462-81. doi: 10.1002/anie.200200558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验