Fuhrmann Jakob, Schmidt Andreas, Spiess Silvia, Lehner Anita, Turgay Kürsad, Mechtler Karl, Charpentier Emmanuelle, Clausen Tim
Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
Science. 2009 Jun 5;324(5932):1323-7. doi: 10.1126/science.1170088.
All living organisms face a variety of environmental stresses that cause the misfolding and aggregation of proteins. To eliminate damaged proteins, cells developed highly efficient stress response and protein quality control systems. We performed a biochemical and structural analysis of the bacterial CtsR/McsB stress response. The crystal structure of the CtsR repressor, in complex with DNA, pinpointed key residues important for high-affinity binding to the promoter regions of heat-shock genes. Moreover, biochemical characterization of McsB revealed that McsB specifically phosphorylates arginine residues in the DNA binding domain of CtsR, thereby impairing its function as a repressor of stress response genes. Identification of the CtsR/McsB arginine phospho-switch expands the repertoire of possible protein modifications involved in prokaryotic and eukaryotic transcriptional regulation.
所有生物都面临着各种环境压力,这些压力会导致蛋白质错误折叠和聚集。为了清除受损蛋白质,细胞发展出了高效的应激反应和蛋白质质量控制系统。我们对细菌的CtsR/McsB应激反应进行了生化和结构分析。与DNA结合的CtsR阻遏物的晶体结构确定了与热休克基因启动子区域高亲和力结合重要的关键残基。此外,McsB的生化特性表明,McsB特异性地使CtsR DNA结合结构域中的精氨酸残基磷酸化,从而损害其作为应激反应基因阻遏物的功能。CtsR/McsB精氨酸磷酸开关的鉴定扩展了原核和真核转录调控中可能涉及的蛋白质修饰种类。