Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA
Neural Netw. 2009 Dec;22(10):1383-98. doi: 10.1016/j.neunet.2009.05.007. Epub 2009 May 23.
Visually guided navigation through a cluttered natural scene is a challenging problem that animals and humans accomplish with ease. The ViSTARS neural model proposes how primates use motion information to segment objects and determine heading for purposes of goal approach and obstacle avoidance in response to video inputs from real and virtual environments. The model produces trajectories similar to those of human navigators. It does so by predicting how computationally complementary processes in cortical areas MT(-)/MSTv and MT(+)/MSTd compute object motion for tracking and self-motion for navigation, respectively. The model's retina responds to transients in the input stream. Model V1 generates a local speed and direction estimate. This local motion estimate is ambiguous due to the neural aperture problem. Model MT(+) interacts with MSTd via an attentive feedback loop to compute accurate heading estimates in MSTd that quantitatively simulate properties of human heading estimation data. Model MT(-) interacts with MSTv via an attentive feedback loop to compute accurate estimates of speed, direction and position of moving objects. This object information is combined with heading information to produce steering decisions wherein goals behave like attractors and obstacles behave like repellers. These steering decisions lead to navigational trajectories that closely match human performance.
在杂乱的自然场景中进行视觉引导导航是一个具有挑战性的问题,动物和人类可以轻松完成。ViSTARS 神经模型提出了灵长类动物如何使用运动信息来分割物体并确定朝向,以便在真实和虚拟环境的视频输入下接近目标和避免障碍物。该模型产生的轨迹类似于人类导航员的轨迹。它通过预测皮质区域 MT(-)/MSTv 和 MT(+)/MSTd 中的计算互补过程如何分别为跟踪和导航计算物体运动和自身运动来实现这一点。模型的视网膜对输入流中的瞬态做出反应。模型 V1 生成局部速度和方向估计。由于神经孔径问题,这个局部运动估计是模糊的。模型 MT(+)通过一个注意力反馈回路与 MSTd 相互作用,以计算 MSTd 中的准确朝向估计,这些估计定量模拟了人类朝向估计数据的性质。模型 MT(-)通过一个注意力反馈回路与 MSTv 相互作用,以计算移动物体的速度、方向和位置的准确估计。该物体信息与朝向信息相结合,以产生转向决策,其中目标表现为吸引子,障碍物表现为排斥物。这些转向决策导致与人类表现非常匹配的导航轨迹。