Suppr超能文献

自然场景中导航和转向的皮层动力学:基于运动的目标分割、朝向和避障。

Cortical dynamics of navigation and steering in natural scenes: Motion-based object segmentation, heading, and obstacle avoidance.

机构信息

Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA

出版信息

Neural Netw. 2009 Dec;22(10):1383-98. doi: 10.1016/j.neunet.2009.05.007. Epub 2009 May 23.

Abstract

Visually guided navigation through a cluttered natural scene is a challenging problem that animals and humans accomplish with ease. The ViSTARS neural model proposes how primates use motion information to segment objects and determine heading for purposes of goal approach and obstacle avoidance in response to video inputs from real and virtual environments. The model produces trajectories similar to those of human navigators. It does so by predicting how computationally complementary processes in cortical areas MT(-)/MSTv and MT(+)/MSTd compute object motion for tracking and self-motion for navigation, respectively. The model's retina responds to transients in the input stream. Model V1 generates a local speed and direction estimate. This local motion estimate is ambiguous due to the neural aperture problem. Model MT(+) interacts with MSTd via an attentive feedback loop to compute accurate heading estimates in MSTd that quantitatively simulate properties of human heading estimation data. Model MT(-) interacts with MSTv via an attentive feedback loop to compute accurate estimates of speed, direction and position of moving objects. This object information is combined with heading information to produce steering decisions wherein goals behave like attractors and obstacles behave like repellers. These steering decisions lead to navigational trajectories that closely match human performance.

摘要

在杂乱的自然场景中进行视觉引导导航是一个具有挑战性的问题,动物和人类可以轻松完成。ViSTARS 神经模型提出了灵长类动物如何使用运动信息来分割物体并确定朝向,以便在真实和虚拟环境的视频输入下接近目标和避免障碍物。该模型产生的轨迹类似于人类导航员的轨迹。它通过预测皮质区域 MT(-)/MSTv 和 MT(+)/MSTd 中的计算互补过程如何分别为跟踪和导航计算物体运动和自身运动来实现这一点。模型的视网膜对输入流中的瞬态做出反应。模型 V1 生成局部速度和方向估计。由于神经孔径问题,这个局部运动估计是模糊的。模型 MT(+)通过一个注意力反馈回路与 MSTd 相互作用,以计算 MSTd 中的准确朝向估计,这些估计定量模拟了人类朝向估计数据的性质。模型 MT(-)通过一个注意力反馈回路与 MSTv 相互作用,以计算移动物体的速度、方向和位置的准确估计。该物体信息与朝向信息相结合,以产生转向决策,其中目标表现为吸引子,障碍物表现为排斥物。这些转向决策导致与人类表现非常匹配的导航轨迹。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验