Lee E S, Back S Y, Lee J T
Department of Mechanical Engineering, Inha University, Incheon 402-751, Korea.
J Nanosci Nanotechnol. 2009 Jun;9(6):3424-32. doi: 10.1166/jnn.2009.ns12.
Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.
传统上,电化学加工一直应用于高度专业化的领域,如航空航天和国防工业。现在,它越来越多地应用于其他行业,这些行业需要加工具有难切削材料、复杂几何形状和摩擦学特性的零件以及纳米级和微米级的器件。在电化学加工中,电特性起主要作用,化学特性起辅助作用。因此,电化学加工的基本参数可以描述为电流密度、加工时间、电极间隙尺寸、电解液、电极形状等。电化学加工为将高强度、高张力和耐热材料加工成复杂形状(如钛合金和铝合金的涡轮叶片)提供了一种经济有效的方法。在电化学环境中,在工具电极和工件之间施加纳米级电压脉冲,可以对导电材料进行亚微米精度的三维加工。在本研究中,通过电化学蚀刻开发了微探针,并使用这些微探针作为工具电极制造了微孔。通过使用纳米级电压脉冲,可以精确地加工出微孔和微槽。